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1.0  Introduction

ersonal Communication Network (PCN) is a wireless com-
munication network which integrates various services such
as voice, video, electronic mail, accessible from a single
mobile terminal. These various services are offered in an
area called coverage zone which is divided into cells. In

each cell is installed a base station which manages all the communica-
tions within the cell. In the cover zone, cells are connected to special
units called switches which are located in mobile switching centers
(MSC). When a user in communication goes from a cell to another, the
base station of the new cell has the responsibility to relay this communi-
cation by allotting a new radio channel to the user. Supporting the
transfer of the communication from a base station to another is called
handoff. This mechanism, which primarily involves the switches, occurs
when the level of signal received by the user reaches a certain thresh-
old. We distinguish two types of handoffs. In the case of Figure 1 for
example, when a user moves from cell B to cell A, it refers to soft hand-
off because these two cells are connected to the same switch. The MSC
which supervises the two cells remains the same and the induced cost is
low. On the other hand, when the user moves from cell B to cell C, there
is a complex handoff. The induced cost is high because both switches 1
and 2 remain active during the procedure of handoff and the database
containing information on subscribers must be updated.

The total operating cost of a cellular network includes two components:
the cost of the links between the cells (base station) and the switches to
which they are joined, and the cost generated by the handoffs between
cells. It appears therefore intuitively more discriminating to join cells B
and C to the same switch if the frequency of the handoffs between them
is high. The problem of assigning cells to switches essentially consists
of finding the configuration that minimizes the total operating cost of
the network. The resolution of this problem by an exhaustive search
method would entail a combinatorial explosion, and therefore an expo-
nential growth of execution times. This problem belongs to the class of
NP-complete problems, well-known especially in operational research.
It relates to the problems of warehouse location [1] and graph partition-
ing [5]. This paper formulates the problem, proposes an algorithm for its
solution, then summarizes and analyzes the computational results.

2.0 Formulation Of The Problem
The problem of assigning cells to switches in a cellular mobile net-
work, as described by Merchant and Sengupta [6], can be formulated as
follows: Given n cells and m switches, a matrix of the wiring costs
between cells and switches, a matrix of handoff costs between cells,
minimize the total cost of the network, by choosing the assigning con-
figuration, under constraints of switches' capacity.

Locations of cells and switches are known. cik denotes the cost of wir-
ing cell i to switch k,  λi the call rate generated in cell i, and Mk the
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capacity (in number of calls) of the switch k. The problem of assigning
cells to switches may be regarded as an integer programming one. Let's
define the variable:

Considering that a given cell can be assigned to only one switch, we
have the following constraint:

              , i = 1,…, n       (1)

The constraint of capacity on the switches are expressed as follows:

             , k = 1,…, m     (2)

On the other hand, the wiring cost is: 

 (3)

Let's assume that Hij and H’ij are respectively the handoff cost if cells i
and j are assigned to the same switch, and the handoff cost if they are
assigned to different switches. These costs are more difficult to handle.
We define therefore the additional variables:

        zijk = xik.xjk, i, j = 1,…, n, and k = 1,…, m             (4)

xik = 
1 if cell i is assigned to switch k,

0, otherwise.
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Cet article propose un algorithme génétique pour résoudre le
problème d'affectation de cellules aux commutateurs dans la phase
de planification des réseaux cellulaires mobiles. Bien connu dans
la littérature comme un problème difficile d'optimisation combina-
toire, ce problème requiert le recours à des méthodes heuristiques
pour obtenir de bonnes solutions, non nécessairement optimales,
dans des temps de calcul raisonnables. Les résultats numériques
confirment l'efficacité de cet algorithme pour produire de bonnes
solutions à des instances du problème de taille pratique.

This paper proposes a genetic algorithm to solve the problem of
assigning cells to switches in the planning phase of mobile cellular
networks. Well-known in the literature as an NP-hard combinato-
rial optimization problem, this problem requires recourse to
heuristic methods in order to obtain good (not necessarily optimal)
solutions within a practical amount of time. Computational results
obtained from extensive tests confirm the effectiveness of this
algorithm in providing good solutions to practical sized problems.
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     and yij = ,  i, j = 1,…, n                    (5)

From these definitions, the handoff cost by time unit is given by:

 (6)

The total cost to be minimized is the sum of the costs of links between
cells and switches and those of handoffs between cells. It can be writ-
ten as follows: 

(7)

3.0 The Proposed Genetic Algorithm
Genetic algorithms (GA) are robust search techniques based on natural
selection and genetic production mechanisms. GAs perform a search by
evolving a population of candidate solutions through non-deterministic
operators and by incrementally improving the individual solutions form-
ing the population using mechanisms inspired from natural genetics and
heredity (e.g., selection, crossover and mutation). In many cases, espe-
cially with problems characterized by many local optima (graph
coloring, travelling salesman, network design problems, etc.), tradi-
tional optimization techniques fail to find high quality solutions. GAs
can be considered as an efficient and interesting option.

GAs [3] are composed of three phases: a phase of creation of an initial
population, a phase of alteration of this population by applying various
genetic operators on its elements, and finally a phase of evaluation of
this population during a certain number of generations. Each generation
is supposed to provide new elements that are better than those of the
preceding generation. Intuitively, the larger the number of generations,
the more refined the solution. It is hoped that the last generation will
provide a good solution, but this solution is not necessarily the
optimum. 

In our adaptation, we opted for a non-binary representation of the chro-
mosomes [4]. As shown in Figure 2, the genes (squares) represent the
cells, and the integers they contain represent the switch to which the cell
i (gene of the ith position) is assigned. Our chromosomes have therefore
a length equal to the number of cells in the network, and the maximal
value that a gene can take is equal to the number of switches.

3.1 Initial population formation 

The first element of the initial population is the one obtained when all
cells are assigned to the nearest switch. This first chromosome is cre-
ated therefore in a deterministic way. The creation of other
chromosomes of the population is probabilistic and follows the strategy
of population without doubles. This strategy ensures the diversity of the
population and a good coverage of the search space. All chromosomes
of the population verify the unique assignment constraint, but not neces-
sarily the switch capacity constraint. The maximum size of this initial
population cannot exceed mn in order to avoid duplicates. Various oper-
ators and functions are then applied to this population.

3.2 Crossover operator

This operator creates two new “child” chromosomes by crossing the
parent chromosomes (taking genes 1 … i of one parent and genes (i+1)
… n of the other parent for some randomly chosen i). We randomly
choose a pair of chromosomes from the population, then either create
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two new chromosomes by applying the crossover operator, or apply the
inversion operator to modify the parent chromosomes by reversing the
order of their genes. The decision of which operator to apply is gov-
erned by a parameter called the crossover probability. In either case, the
parent chromosomes are kept in the new population.

3.3 Mutation operator

This operator randomly modifies (with a certain probability) one or
more genes of a chromosome. This is necessary to bring back the
genetic material that would have been forgotten during the generations.
Note that some of the new chromosomes may violate the switch capac-
ity constraint - such chromosomes will be discarded later. By applying
the mutation operator to each element of the population, we create a
new population with twice the number of elements (the mutated chro-
mosomes plus the original ones). This new population is evaluated, then
sorted.

3.4 Evaluation function 

One of the key elements in a GA is the evaluation function which deter-
mines how well the chromosomes suit the needs of the problem domain.
In the first stage of evaluation, we compute the cost associated with
each chromosome and then sort them in ascending order of cost. The
second stage of evaluation checks if the chromosomes violate the capac-
ity constraint on the switches. We keep solutions that violate the
capacity constraint by 10% or less in a list which will be checked later,
since a small modification could make them feasible.

3.5 Selection operator 

To select the elements of the new generation, we used the method of the
casino caster. As the problem that we have to solve is a problem of
minimization, we applied the caster to the inverses of the cost values of
the chromosomes of the population. We recover then in the new
selected population either chromosomes that verify the constraint on the
capacity of the switches or those that violate it. The number of genera-
tions is fixed at the beginning of the execution. We inserted into our
adaptation the concept of cycle - each cycle runs several successive
genetic processes. At every cycle, a new initial population is created.
Figure 3 shows the flow chart of the genetic process.

Figure 3: Genetic process flow chart.

4.0 Computational Results
To implement the proposed adaptation, we designed a program (in C++)
which has a complexity of mn2 (m and n being respectively the number
of switches and the number of cells). Two files essentially constitute the
input data for this program. The program was run on a 450 MHz Pen-
tium III PC running Linux. To verify the performance of our algorithm,
we performed some tests on networks of different sizes ranging from 15
cells and 2 switches to 200 cells and 7 switches. Each test was per-
formed 5 times and we report the average costs. We repeated the
experiments with various parameter values in order to see which values
worked best.

Figure 4 illustrates the effect of the population size on the obtained
results. It shows, for 4 input files representing different networks of the 

For i:=1 to Nb_Cycle

Generate a new population

For j:=1 to Nb_Generation

• Apply crossover operator
• Apply mutation operator
• Evaluate the obtained population
• Sort the population
• Verify if the new chromosomes

violate the capacity constraint  
• Save the best chromosomes
• Apply selection operator

 1  2  2  1  2  1  1  2 

Cell 3 is assigned to switch 2 Cell 7 is assigned to switch 1

Figure 2: A chromosome representation for a network of 2
switches and 8 cells.
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same size (7 switches and 200 cells), the gap between the obtained solu-
tions and the lower bound obtained by assigning each cell to the nearest
switch. We executed our algorithm on these networks with population
sizes of 40, 60, 80, 100 and 150 elements. The other parameter values
were: 

• Number of generations: 40
• Number of cycles: 20
• Crossover probability: 0.9
• Mutation probability: 0.08

4.1 Network of 200 cells and 7 switches

The obtained solutions are very near or identical to the optimal ones.
Nevertheless, we generally note, for moderate- or large-sized networks,
that as the size of the population increases, the gap between the obtained
solutions and the lower bound decreases. One could conclude that a
larger population gives better results because it introduces a high diver-
sity in the population and permits good coverage of the search space. 

We compared the results obtained with our algorithm (GA) with those
obtained by application of two other methods that have all been
designed to solve the problem of assigning cells to switches in cellular
mobile networks. Those methods are the HB heuristic proposed by
Beaubrun et al. [2], and the method of simulated annealing (SA). We
performed the tests on two series of data. The first set related to a vari-
able number of switches, and the second to a fixed number of switches.
These methods have been coded by the authors and we use the same
sets of data to achieve the comparison. The results are reported in tables
1 and 2. These results represent the costs of different networks and all
the reported solutions are feasible.

The results of this comparative survey are summarized in figures 5 and
6. Our genetic algorithm provides better results than the other methods
for small- and moderate-sized networks. As shown in Figure 5, our

algorithm gets results that are about 30% better for networks up to 50
cells and 4 switches (small and moderate-sized networks).

The results provided by GA are always better than those provided by
HB, as shown in figures 5 and 6. The improvement rate is in general
higher than 20% for the networks having 3 switches and a number of
cells lower or equal to 60. And in general, GA provides better results
than simulated annealing. Sometimes solutions provided by GA are less
good than those generated by SA, especially for networks of 100 and
150 cells.

In summary, considering the overall performance of these different heu-
ristics, the proposed GA generally gives better results than simulated
annealing and the heuristic HB proposed by Beaubrun et al. [2].

5.0 Conclusion
In this paper, we have proposed an adaptation of the genetic algorithm
to solve the problem of assigning cells to switches in Personal Commu-
nication Networks. Computational experiments show that our method
compares favorably with 2 other methods (simulated annealing and heu-
ristic HB [2]) when applied to the same problem. 
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Table 1: Comparative results for GA, SA and HB (variable 
numbers of switches)

# of 
Cells

# of
Switches

GA SA HB

15 2 114 123 153

30 3 394 405 524

50 4 697 851 873

100 5 2265 1999 2511

150 6 4980 4271 4807

200 7 3721 7801 4963

Table 2: Comparative results for GA, SA and HB (fixed 
numbers of switches)

# of 
Cells

# of
Switches

GA SA HB

15 3 133 139 169

20 3 238 189 292

30 3 395 369 498

40 3 424 611 581

50 3 600 748 816

60 3 917 832 1071
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Figure 4: Effect of the population size.
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Figure 6: Comparative results obtained for networks of 3
switches and variable number of cells ( ).
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