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Cet article examine les techniques de codage source et de canal qui
sont nécessaires pour le transfert fiable des mammographies numé-
riques sur un canal sans fil à bruit additif blanc gaussien (AWGN).
D’abord, afin de maximiser l’utilisation de la bande passante tout en
maintenant l’intégralité du signal d’entrée, des techniques de com-
pression source sans perte sont étudiées. Une attention particulière
est prêtée aux compresseurs assurant le taux de compression le plus
élevé. En second lieu, pour assurer un transfert fiable de données à
travers un canal sans fil affecté de bruit, la correction d’erreurs et
les mécanismes de détection sont discutés en focalisant sur des
configurations de codage réalisant les plus bas taux d’erreurs sur les
bits. Spécifiquement, pour des fins expérimentales, des mammo-
graphies numérisées et sauvées sous format PGM ont été utilisées.
Avant de choisir la configuration optimale de codage, les implica-
tions des algorithmes de codage source et de canal sur les assistants
numériques personnels (PDAs) et des ordinateurs seront étudiées.
L’objet principal de l’étude sera la complexité du calcul et les
retards dans le codage et le décodage.

This paper examines source and channel coding techniques that are
necessary for reliable transfer of digital mammograms over a wire-
less AWGN channel. First, in order to maximize bandwidth
efficiency while maintaining the input signal’s entirety, lossless
source compression techniques are investigated. Particular atten-
tion is paid to compressors that produce the highest degree of
compression. Second, to ensure reliable data transfer over a noisy
wireless channel, error correction and detection mechanisms are
discussed focusing on schemes that achieve the lowest bit error
rates. Specifically, for experimental purposes, digitized mammo-
grams saved as Portable Grey Maps (PGM) were used. Prior to
choosing the optimal coding arrangement, the implications of the
source and channel coding algorithms on PDAs and computers will
be examined. Major concerns are computational complexity and
encoding and decoding delays.
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1.0 Introduction
elemedicine is a fairly new and emerging field of engineer-
ing that is dedicated to providing hi-tech technologies to
the medical profession. This paper seeks the most favor-
able method in which digital mammograms can be
prepared for transfer over a wireless link. This transfer

could be over a radio channel and may be between two computers or
from a computer to a piece of mobile equipment.

The intended beneficiaries of this research are professionals who may
need to transfer sensitive, medical information; in particular medical
images (i.e. digitized x-rays) and physiological signals for an expert
referral, and in emergency ambulatory situations.

The mobile unit of choice that is under investigation is the Personal
Digital Assistant (PDA), which is easy to use, portable and is a power-
ful computing device with a high definition display. As a result, this
research will consider the operability of any channel or source coding
technique on these types of devices.

The reliability of data transmission will be simulated with real-world
medical mammograms (x-ray images of the breast). The images inves-
tigated are from the MIAS database, which contains numerous
mammograms that are normal, benign or malignant (Figure 1).

2.0 Source Compression
Since the mammograms in question are to be later interpreted by a
diagnosing physician, it is important to retain the image’s accuracy and
therefore lossless compression schemes will be investigated. An opti-
mal lossless compression scheme will reduce the input image size
significantly. By doing so, it will compensate for the additional redun-
dant bits inserted by the channel encoder. Additional considerations
such as computational complexity, encoding delays, transmission
overhead and whether these compression techniques are practical for
various computing devices will be investigated prior to deeming a
source encoder favorable.

2.1 Source Description

When deciding which compression scheme is optimal for a desired
application, it is first necessary to characterize and understand the

Figure 1: PGM sample of digitized mammogram (benign
case)
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unique features of the source. Identifying the source characteristics will
allow an appropriate source encoder to exploit those qualities. Sources
may be grouped into two categories:

1) Memoryless Source - a source that emits symbols that are sta-
tistically independent of one another.

2) Memory Source - a source that emits symbols that are depen-
dant on any number of its previously emitted symbols.

When considering a digital image, it is highly unlikely that adjacent
pixels are going to be perfectly independent of one another. This is
because regions in a digital image are usually concentrated with one
color and gradually blend into another. Therefore, it is concluded that
each pixel exhibits a high degree of correlation with its neighbor pixel,
and as a result, the digital image inputs can be modeled as a source with
memory.
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After some investigation, it was found that digital images prove to be
exceptionally correlated with their immediate neighbors [1]. This leads
to the deduction that a first order Markov model would be an accurate
description of the source.

2.2 Adaptive Huffman

The adaptive Huffman compressor is a modification of the conven-
tional Huffman algorithm. Instead of gathering symbol statistics first,
the encoder and decoder use a dynamic tree that counts the probability
of occurrence and assigns a codeword to each symbol, in real time. This
is one of the major advantages of any adaptive Huffman scheme. It does
not need to first scan the entire file to gain knowledge of the input file’s
characteristics, which significantly reduces the total encoding time for
large files. Therefore, the only delay arises from the computational
complexity of the algorithm. For the Faller, Gallager, and Knuth (FGK)
algorithm, D.E Knuth has proved the complexity to be O(l) where l is
the current length of the codeword [2].

Additionally, both the encoder and decoder manage their own informa-
tion about the input message and do not require a look up table, unlike
static Huffman codes. As a result no additional information needs to be
transmitted with the encoded symbols allowing for maximum band-
width utilization.

A downfall of any Huffman compressor is due to the fact that maxi-
mum compression is achieved when the symbol probabilities are a
power of 1/2 [3].

2.3 Arithmetic Coding

Arithmetic compressors are composed of two parts: the arithmetic coder
and the Markovian data model. The arithmetic coder assigns a floating
point interval between 0 and 1 for each symbol. The interval endpoints
are allocated by dividing the original encoding interval according to a
specific algorithm that depends on the source probability distribution,
which is described by a Markovian model.

Arithmetic coders are ideal for large symbol sets as the floating point
interval can be divided as many times as the computing processor
allows. Another advantage of arithmetic compression arises from the
fact that the Markovian model takes into consideration the correlation
between symbols, thus allowing for higher compression.

A major disadvantage of any arithmetic coder is its computational com-
plexity. Some scholars say that for arithmetic coders that incorporate a
Markovian data model, the complexity is at least O(n3), where n is the
length of the codeword [4]. Furthermore, because a probability model is
required, the input file must be scanned twice to be encoded and the
symbol mapping scheme must also be transmitted along with the code-
words. As a result, delay and transmission overhead are introduced.

2.4 Lempel-Ziv Welch (LZW) Coding

LZW compression is achieved using a dictionary based approach. As
input symbols arrive, the encoder checks the dictionary. If the symbol

can be located within the dictionary, the related codeword is assigned
and transmitted. Otherwise, the new symbol is added to the dictionary
and is assigned a unique codeword. Since codewords are appointed to a
given symbol only if it is found in the dictionary, LZW codes rely
heavily on repeating patterns. This can be good or bad depending on the
application. If the input data is highly correlated, LZW compressors will
find a large number of repeating patterns which will produce a high
degree of compression. However, if there are only a few recurring pat-
terns, the dictionary will be indefinitely long and the achieved
compression will not be significant.

Similar to adaptive Huffman schemes, prior to encoding, LZW codes do
not require any knowledge of the symbol’s statistical characteristics and
both the encoder and decoder maintain their own dictionaries. As a
result, encoding only requires one scan of the file and delays are caused
primarily as a consequence of computational complexity. If a message
of length u is compressed to a length of n, when considering a pattern of
length m, to find all R occurrences of this pattern in the message takes
O(2m+mn+Rmlog(m)) time for the worst case scenario. On average, the
worst case drops to O(2m+(n+R)log(m)), which will still reach espe-
cially high values for long message and pattern lengths [5].

2.5 Experimental Results

To test the performance of various lossless source encoders, several dig-
ital mammograms supplied by the MIAS database were used as input
messages. In particular, the source coding algorithms that were experi-
mented with were adaptive Huffman codes, LZW codes with 12 bit and
15 bit dictionaries and arithmetic coders with order-0 and order-1 prob-
ability models. A coder with an order-n probability model assumes that
the present symbol is statistically dependant on the previous n symbols
emitted from the source. As previously discussed, the images in ques-
tion were found to exhibit exceptional correlation with their immediate
neighbour, so the data model need not be higher than an order-1. A
desktop computer with a 1.4 GHz processor was the computing device
where all tests were conducted.

Average compression ratios for 30 mammograms (in bits per pixel) can
be found in Figure 2.

The average first order Markov entropy over all images was found to be
1.5381 bits/pixel and was calculated by

Where:

x and y are the present and past integer pixel values respectively.

Using the found entropy results, the efficiency for the previously listed
source coders was easily found and are illustrated in Figure 3.

Upon examination of Figures 2 and 3, arithmetic coding with a first
order probability model gave rise to the lowest compression ratio and
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Figure 2: Average compression ratios in bits/pixel Figure 3: Efficiency results
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the highest efficiency. LZW with a 15 bit dictionary also produced
desirable compression and efficiency results, even though they did not
supersede the results produced by the arithmetic order-1 compressor.
However, as previously stated, there are many other concerns that must
be considered when choosing the optimal source compression scheme
for any application. Such considerations include computational com-
plexity, encoding and decoding speed and whether it is possible to
execute these compressors on different devices.

The adaptive Huffman compressor is not a very complex algorithm
O(n)) and does not require a probability model. For these reasons, the
encoding and decoding delay was minimal and was noted to be in the
order of milliseconds. Although this was confirmed using a 1.4 GHz
processor, it is very easy to deduce that because of the small number of
computations required and the need for only a single file scan, similar
results could be reproduced on a PDA that uses a 400 MHz processor.
Additionally, adaptive Huffman codes do not transmit the symbol map-
ping scheme along with the encoded symbols, which permits for
maximum bandwidth utilization.

Although adaptive Huffman codes performed exceptionally well in all
other aspects, the compression it achieved was very poor. Its heavy reli-
ance on symbols that occur statistically in powers of 1/2 is the reason
for the inadequate compression results.

Arithmetic coders are a versatile compressor as they can account for a
Markovian data model and therefore data correlation. The advantages
are visible from the results shown in Figures 2 and 3. Since the digital
images have been found to exhibit correlation in a first order Markov
fashion, the immense benefits of considering a Markovian data model
can be seen when comparing the exceptional compression characteris-
tics of an arithmetic order-1 coder with the poor results of an arithmetic
coder using a order-0 probability model.

Arithmetic coding is also a flexible compression scheme because it can
handle large symbol sets. This is true because the symbol mapping
scheme is dependent on a floating point interval and how many times it
can be divided, which relies on the precision of the computing device.
For computers and PDAs, which have processors that can maintain the
precision of a number within 64 and 32 bits, respectively, large symbol
sets are easily supported. The precision that these devices sustain also
allows interval end points to be rather insensitive to truncation and
rounding errors.

The major downfall of arithmetic coding is its complexity. As stated
before, when an arithmetic coder considers a Markovian model for the
source, which requires two scans of the input file, complexity is at least
O(n3). This was confirmed experimentally by observing the encoding
and decoding delays. Because arithmetic order-0 did not use a memory
source model, it encoded and decoded rather quickly, whereas even on a
1.4 GHz processor, arithmetic order-1 took a few seconds. Since the
arithmetic order-1 compressor gave rise to the most desirable results, its
complexity is a major concern. For PDAs that operate at 400 MHz,
there may be a longer delay than that which was found for the desktop
computer. For a real time application, this delay may not be desired.

Because the LZW algorithm is based on finding repeating patterns, it
can be very effective when compressing files that are highly correlated.
In order to achieve high compression ratios, two things need to be satis-
fied: the input file must be large enough to be able to find a significant
amount of pattern repetitions and the maximum buffer length in the dic-
tionary must be longer than the period of the longer repeating patterns.
For both LZW 12 and 15 bit, the message size was large enough, but for
LZW 12 bit, the maximum buffer length was not long enough to realize
the longer patterns. This was concluded upon observation of the fact
that LZW 12 bit performed poorly with respect to LZW 15 bit. In fact,
LZW 15 bit offered almost as good compression results as those of
arithmetic order-1.

Although LZW 15 bit provided good results, it suffered from a notice-
able encoding and decoding delay. As mentioned before, delays in the
compression and expansion process is due to the average time
O(2m+(n+R)log(m))) taken to find R patterns of length m, to result in a
compressed file of size n. For large message sizes, which is the case
here, and for patterns that are a maximum length of 215 (for LZW 15
bit), this computational complexity becomes extremely high. When
LZW was tested on a 1.4 GHz processor, the entire encoding and
decoding process took a couple of seconds longer than that of arith-
metic order1. Although LZW codes are computed in real-time and only
require one scan of the file, the decoding delay may be more noticeable
slower processors, like those of a PDA. When considering source com-
pression schemes, one needs to decide whether the delay is worth the

amount of compression that is achieved. Such a delay may be
undesirable.

3.0 Channel Codes
There are many types of channel encoding schemes that can be used in
digital communication systems such as convolutional codes, linear
block codes (LBC), and various types of hamming codes. The perfor-
mance of two of these techniques, convolutional codes and LBC, were
investigated and tested in the transmission of digital mammograms in
all white Gaussian noise (AWGN) channel.

3.1 Choosing a Channel Coder

Convolutional and linear block codes (LBC) were chosen because they
can combat many types of channel impairments including AWGN.
However, it will be demonstrated that convolutional codes have several
distinct advantages over LBC, and because of this, convolutional codes
are the focus of this section.

Convolutional encoders are simple to design and operate at very high
speeds because they are composed of simple logic circuits. Also, convo-
lutional codes can be designed with much more ease than LBC codes
because no systematic procedure exists to aid in the design of LBC
codes [6]. Additionally, efficient low rate convolution codes are widely
used in many applications such as the Global System for Mobile Com-
munication (GSM), IEEE 802.11x standards for wireless local area
networks (WLAN) and NASA’s deep space communication. This dem-
onstrates that convolutional codes can operate on a variety of platforms
including PDAs.

3.2 Convolutional Encoding

In general, any convolutional encoder can be described by the three
parameters: n, k and K, where n is the number of output bits, k is the
number of input bits per output set and K is the constraint length of the
encoder which is equal to the number of memory location in the regis-
ter. This is shown in Figure 4.

The rate or efficiency of the encoder is the ratio of the input bits to the
output bits per sample time shown below:

The encoding rate affects the bandwidth of the transmitted message sig-
nificantly. For example, if k=1, then the rate (or efficiency) is equal to
1/n, which means that the encoder output is n-times the input. This is
the primary reason that source compressors are often used in conjunc-
tion with convolutional coders as they compensate for the increase in
file size. To reduce bandwidth requirements only encoding rates of 1/2
and 1/3 were considered. Furthermore, to significantly reduce the
decoding complexity (memory as well as computations) only rate 1/n
encoders were considered.

Figure 4: Convolutional encoder with encoding polynomials
7,5 (in octal), rate k/n and constraint length (K =3)
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3.3 Viterbi Decoding

Although encoding is very fast and simple for any given set of specifi
cations, convolutional decoders are considerably more complex. low
constraint length (K) encoders, Viterbi decoding can drastically reduce
complexity and can operate as fast as 100 Mbits/s [6]. In fact, because of
its simplicity, Viterbi decoding is one the main advantages of convolu-
tional encoding. Simplifications offered by Viterbi decoding include the
use of hamming or Euclidean distances to measure error the received
codeword, as well as reducing the memory requirements half via the
introduction of survivor paths as is demonstrated in [8]. The main
parameter that requires attention, in Viterbi decoding is decoding depth
(D). The decoding depth determines the amount of error that can be cor-
rected by the decoder. It also establishes the mem ory requirements of
the decoder and can be expressed by

Because Viterbi decoding relies on maximum likelihood probabilities,
small values of D will produce poor Bit Error Rate (BER) results while
large values of D will produce the best BER results. However, for large
values of D, the decoder complexity increases significantly. Experimen-
tal results will determine the best decoding depth to be used for each
encoder polynomial set. Furthermore, decoding complexity depends on
the constraint length (K). We can see from equation 3 that decoder com-
plexity and memory requirements grow proportional to 2K. Therefore,
Viterbi decoding becomes impractical for large values of K (K>10) and
in practice K is often kept small for this reason [6]. To minimize the
decoder complexity, the encoder constraint length (K) was kept to below
five.

3.4 Channel Simulation

The performance of convolution encoder polynomials are difficult to
predict. To aid in the design and experimental process, a Viterbi decoder
was designed with a built-in AWGN channel simulator so that BER
results for any rate 1/n encoder could be calculated.

In order to calculate BER, prior to transmission into the AWGN chan-
nel, the simulator first performs polar-NRZ line coding techniques on
the binary data.  Polar-NRZ line coding techniques map binary 1 to +1
and binary 0 to -1, as can be seen in Figure 5.  Upon reception, it is then
the decoder’s job to decode the noisy output from the channel. After
doing so, the performance of the encoding polynomial can be measured
based on decoded bit error rates. Assuming polar-NRZ line coding has
been used prior to transmission; the theoretical BER of the received
message can be calculated by

KDmemory 2×= (3)
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3.5 Experimental Results

By limiting the encoder rate to 1/2 and 1/3 as well as limiting the con
straint length (K) of the encoder to below five (as discussed earlier),
there was a significant reduction in the memory requirements of the
decoder, while simultaneously reducing the number of computations per
decoded bit.

Many polynomial sets were tested and their performance was measured
using the simulator.  From these polynomial sets, the best rate 1/2 and
polynomials were chosen for the final design. These polynomials and
their characteristics are shown in Table 1, and their performance charac
teristics are shown in Figure 6 for the case of 1/2 convolutional encoder
after Viterbi decoding and for varying decoding depths (D). Figure accu-
rately depicts two things: Signal Noise Ratio (SNR) versus BER
improvement and also that longer decoding depths do not provide sig
nificant BER improvement.  Since Figure 6 does not provide sufficient
comparative faetures, this figure is repeated as Figure 7 but without the
uncoded channel.

 

We can see from Figures 7 and 8 that the chosen polynomials provide a
significant BER improvement when compared with the uncoded mes-
sage, which can also be seen on the same figures. Furthermore, while
achieving this BER performance, the algorithms can still be imple-
mented on both hand held and larger computers because of the
significant reduction in complexity as discussed.

Lastly, it was found that longer decoding depths also improved BER
performance of the decoder. However, from Figures 7 and 8 it can be
seen that decoding depths of approximately 5K-7K produce comparable
results to decoding depths of 50K for the rate 1/2 polynomial set. Simi-
lar results can also be seen for the rate 1/3 polynomial set. However,
smaller decoding depths significantly decrease the memory require-
ments of the decoder and hence are preferred.

4.0 Conclusion
To prepare a digital mammogram for reliable transmission through a
wireless channel, the image must first be compressed to minimize band-
width usage and then a method of error detection and correction must be
For the mammogram images tested, two compression schemes, arith-
metic order-1 and LZW (with a 15 bit dictionary) produced the highest

Table 1: Convolutional encoder characteristics

Rate Constraint 
Length Polynomial 1 Polynomial 2 Polynomial 3

1/2 3 x2 + x + 1 x2 + 1 -

1/3 4 x3 x + 1 1

Figure 5: Binary waveform and its corresponding polar-NRZ
waveform

Figure 6: SNR vs. BER results for the rate 1/2 convolutional
encoder after Viterbi decoding and for varying decoding
depths (D)
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compression results. Of the two, arithmetic order-1 achieved the high-
est compression ratio because it uses a Markovian data model which
exploits the correlation between adjacent pixels. This exploitation
increases the computational complexity which translates into longer
encoding and decoding delay with respect to LZW (with a 15 bit dic-
tionary) which operates in real-time. Arithmetic order-1 will also be
less bandwidth efficient than LZW (with a 15 bit dictionary) because
the receiver needs the encoder’s data model, thus creating transmission
overhead. Although an arithmetic order-1 compressor may be less
bandwidth efficient and introduces longer encoding and decoding
delays, it is still well warranted for image transmission as more com-
pression will allow for better error correction and detection.

After image compression, a channel coding scheme must be used to
ensure reliable data transfer. Convolutional codes were chosen as the
channel coding technique because of their ability to correct various
types of channel impairments and also because efficient low rate con-
volutional coders are widely being used today in many technologies.
To further reduce computational complexity, only rate 1/2 and 1/3
encoders were considered with constraint lengths of less than five
which enables easy Viterbi decoding. These simplifications allow for
the decoder to operate on a variety of platforms.

Viterbi decoding was chosen because it is widely used for convolution
codes and because of its simplicity. The optimal decoding depth (D)
was found to be 5K-7K, where K is the encoder constraint length.
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Figure 8: SNR vs. BER results for the rate 1/3 convolutional
encoder after Viterbi decoder and for varying decoding depths
(D)

Figure7: SNR vs. BER results for the rate 1/2 convolutional
encoder after Viterbi decoding and for varying decoding depths
(D)
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