
16 IEEE Canadian Review - Summer / Été 2005

The Development of the IEEE/ACM Software Engineering Curricula

Computers / Ordinateurs

1.0 Introduction
he recent surge in the creation of software engineering pro-
grams and their accreditation has resulted in the development
of the Joint IEEE/ACM Computing Curricula - Software
Engineering (IEEE/ACM CCSE) [13]. The primary purpose
of IEEE/ACM CCSE is to provide guidance to academic

institutions and accreditation agencies about what should constitute an
undergraduate software engineering curriculum and its implementation.

A curriculum is a well defined process by which the knowledge and
skills required for a discipline or a profession can be defined and taught
by a number of coherent courses according to a specific degree program.

The IEEE/ACM Joint Task Force on the development of the Software
Engineering Curriculum (JTF-SEC) was established in 1998. The defi-
nition of software engineering and its implication and extension are
discussed in the group.

IEEE defined software engineering as “The application of a systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software [12].” The author perceives that:

“Software Engineering is a discipline that adopts engineering
approaches, such as established methodologies, processes, architec-
tures, measurement, tools, standards, organization methods, man-
agement methods, quality assurance systems and the like, in the
development of large-scale software, seeking to result in high pro-
ductivity, low cost, controllable quality, and measurable develop-
ment schedule [14, 15].”

The JTF-SEC adopted a set of principles to guide the work on the devel-
opment of the Software Engineering Education Knowledge (SEEK) and
the Computing Curricula - Software Engineering (CCSE). The design
philosophy and principles of CCSE are as follows [13]:

• Basic Knowledge and Skills: “All software engineering students
must learn to integrate theory and practice, to recognize the impor-
tance of abstraction and modeling, to be able to acquire special
domain knowledge beyond the computing discipline for the pur-
poses of supporting software development in specific domains of
applications, and to appreciate the good engineering design.”

“CCSE must support the identification of the fundamental skills and
knowledge that all software graduates must possess.”

• Dynamic Curricula: “The rapid evolution and the professional
nature of software engineering require an ongoing review of the
corresponding curriculum.”

“Development of a software engineering curriculum must be sensi-
tive to changes in technology, new developments in pedagogy, and
the importance of lifelong learning.”

• Professionalism: “CCSE must include exposure to aspects of pro-
fessional practice as an integral component of the undergraduate
curriculum.”

• Pedagogy and Implementation Support: “CCSE must include
discussions of strategies and tactics for implementation, along with
high-level recommendations.”

It is recognized that software engineering draws its foundations from a
wide variety of disciplines. Although undergraduate study of software
engineering relies on many areas in computer science for its theoretical
and conceptual foundations, it also requires students to utilize concepts
from a variety of other fields, such as mathematics, engineering and
project management.

2.0 Sources of IEEE/ACM CCSE
The development of IEEE/ACM Computing Curricula - Software engi-
neering (CCSE) is on the basis of a number of international initiatives
and a wide range of educational experiences. The major sources of
CCSE are the IEEE/ACM SWEBOK [5], CCCS [9], IS2002 [4], and
surveys on international software engineering programs.

T
by Yingxu Wang

University of Calgary, Calgary, AB.

Un effort international important et récent en enseignement du
génie logiciel est celui du groupe de travail conjoint IEEE/ACM
sur le développement du Curriculum de génie logiciel (JTF-SEC).
Cet article présente la conception et le développement des Curricu-
lums en informatique - génie logiciel (Computing Curricula -
Software Engineering, CCSE), ainsi que la philosophie et les des-
sous du CCSE d’après l’expérience d’un membre du comité.
L’architecture du CCSE comprend les principes directeurs, des
modèles de curriculums, les domaines de connaissance en ensei-
gnement du génie logiciel, la conception de curriculums, les lignes
directrices pédagogiques, la pratique professionnelle, les program-
mes d’implantation et l’accrédiation. Les composantes majeures du
CCSE sont les Connaissances en enseignement du génie logiciel
(SEEK), une formule d’orientation pédagogique, et des méthodolo-
gies pour la conception de cours et l’accréditation. L’enseignement
du génie logiciel dans SEEK est catégorisé en un ensemble de
domaines de connaissances: fondations, spécifications, concep-
tion, construction, maintenance, processus, qualité et gestion.

Le CCSE se caractérise non seulement par ses structures de con-
naissances, mais aussi par ses recherches sur la pédagogie pour le
génie logiciel. CCSE fournir un ensemble exhaustif de principes
pour la conception des curriculums, des méthodologies pour le
développement de cours en génie logiciel, et des thèmes et modè-
les centraux des curriculums de génie logiciel pour les directeurs
de programmes de génie logiciel et les enseignants. Il est à noter,
cependant, qu’un nombre important de domaines n’ont pas encore
été modélisés dans le curriculum du CCSE tels la notation en génie
logiciel, les mesures et métriques, et les fondations théoriques du
génie logiciel.

A recent important international effort in software engineering
education is the work of the IEEE/ACM Joint Task Force on the
development of the Software Engineering Curriculum (JTF-SEC).
This paper reports the design and development of the Computing
Curricula - Software Engineering (CCSE), and presents the philos-
ophy and insides behind CCSE based on the experience as a
member of the committee.

The architecture of CCSE encompasses the guiding principles, cur-
ricular models, software engineering education knowledge areas,
curriculum design, pedagogy guidelines, professional practice, pro-
gram implementation and accreditation. The major components of
CCSE are the Software Engineering Education Knowledge
(SEEK), a formulate guidance for pedagogy, and methodologies
for course design and accreditation. Software engineering educa-
tion in SEEK is categorized into a set of knowledge areas, known
as foundations, requirements, design, construction, maintenance,
process, quality, and management.

CCSE is featured not only by its knowledge structures, but also by
its studies on pedagogy for software engineering. CCSE provide a
comprehensive set of principles for curriculum design, methodolo-
gies for software engineering course development, and core themes
and models of the software engineering curriculum for both direc-
tors of software engineering programs and instructors of software
engineering courses. It is noteworthy, however, that a number of
important areas have not yet been modeled in the CCSE curricu-
lum, such as software engineering notations, measurement and
metrics, and theoretical foundations of software engineering.

Sommaire

Abstract

IEEE Canadian Review - Summer / Été 2005 17

2.1 IEEE/ACM SWEBOK

The software engineering body of knowledge (SWEBOK) [5] is devel-
oped by an IEEE/ACM joint committee in 2001. SWEBOK provides a
comprehensive description of the knowledge needed for the practice of
software engineering. The IEEE/ACM JTF-SEC has chosen SWEBOK
as one of the primary sources for the development of SEEK

Although CCSE was significantly influenced by SWEBOK, the major
difference between SWEBOK and CCSE is that the former is process-
centered and the latter is water-fall-model based. In addition, SWE-
BOK was designed for professionals working in the software industry
and CCSE is oriented to undergraduate students in software engineer-
ing programs.

2.2 IEEE/ACM CCCS

IEEE-CS and ACM established a task force on Computing Curricula in
1998, that results in the Computing Curricula 2001 (CC2001) [1]. Over
the past fifty years, computing has become an extremely broad designa-
tion that extends well beyond the boundaries of computer science to
encompass such independent disciplines as computer engineering, soft-
ware engineering, and information systems. In representing this trend,
the computing curricula are divided into two volumes known as the
Computing Curricula - Computer Science (CCCS) [9] and the Comput-
ing Curricula - Software Engineering (CCSE) [13].

2.3 ACM/AIS/AITP IS2002

Related to the international effort on CCCS, the Model Curriculum and
Guidelines for Undergraduate Degree Program in Information Systems
(IS 2002) is published in 2002 [4], jointly developed by a task force
chartered by ACM, the Association for Information Systems (AIS), and
the Association of Information Technology Professionals (AITP). IS
2002 is perceived to be useful for both students major in information
technology (engineering), and computer engineering [3].

2.4 IEEE/ACM JTF-SEC

The IEEE/ACM Joint Task Force on the development of the Software
Engineering Curriculum (JTF-SEC) conducted a survey of international
undergraduate programs of software engineering. In this comprehen-
sive survey, 32 programs in North America, Europe, Asia and Australia
have been comparatively analyzed. This work forms the empirical foun-
dation and a global view on the design of CCSE and SEEK.

3.0 IEEE/ACM CCSE
The software engineering curriculum is a set of carefully defined pro-
grams by which the knowledge and skills required for software
engineering as a profession can be defined and taught by a number of
coherent courses for a specific degree in software engineering or com-
puter science.

IEEE/ACM Computing Curricula - Software Engineering (CCSE) con-
centrates on the knowledge and pedagogy associated with a software
engineering curriculum. The architecture and the recommended curricu-
lum of CCSE are described below.

3.1 The Architecture of CCSE

The architecture of CCSE is shown in Figure 1. CCSE encompasses (a)
The guideline principles and professional practice; (b) Software engi-
neering education knowledge, curriculum models, and curriculum
design; and (c) program implementation and assessment, and student
outcomes.

As shown in Figure1, the center of CCSE is the Software Engineering
Education Knowledge (SEEK) and the recommended curricula on soft-
ware engineering.

3.2 The Recommended Curriculum

A software engineering program designed based on IEEE/ACM CCSE
may be divided into the introductory, core, and completing modules as
shown in Table 1, where the recommended courses and their levels in
each module are also described.

4.0 IEEE/ACM SEEK
Software Engineering Education Knowledge (SEEK) is a set of core
and fundamental knowledge that every software engineering graduate
must know [13]. This section describes the architecture of SEEK and
the knowledge areas and units modeled in SEEK.

4.1 The Architecture of SEEK

The architecture of SEEK is shown in Figure 2, where 11 knowledge
areas have been modeled. Each of these knowledge areas is explained
below.

• A1: Fundamentals

Fundamentals of software engineering cover the theoretical and mathe-
matical foundations of software and software engineering technologies.
This area focuses on engineering design, where mathematics and engi-
neering sciences are applied to optimally convert resources to meet a
stated objective [13].

• A2: Professional Practice

Professional practice in software engineering is represented by knowl-
edge, skills, attitudes, and professionalism that software engineers must
possess. It also includes the areas of technical communication, team
working, psychology, and social and professional responsibilities.

Figure 1: Architecture of CCSE

Figure 2: Architecture of SEEK

A3
Requirements

Software Engineering Education Knowledge (SEEK)

A11
System
Application
Specialties

A5
Construction

A6
V&V

A10
Management

A9
Quality

A8
Processes

A7
Evaluation

A4
Design

A1

Software
Engineering
Fundamentals

A2
Professional
Practice

SE
Education
Knowledge
(SEEK)

Computing Curricula - Software Engineering (CCSE)

Program
Implementation
and
Assessment

Curriculum
Design

Curriculum
Models

Guiding
Principles

Professional
Practice Student

Outcomes

18 IEEE Canadian Review - Summer / Été 2005

Table 1: The Recommended Curriculum in CCSE

Cat # Course Title Description
1 Introductory

SE101
Introduction to Software Engineering
and Computing

A first course in software engineering and computing for the software engineering student who has taken no prior
computer science at the university level. Introduces fundamental programming concepts as well as basic concepts of
software engineering.

SE102
Software Engineering and Computing
II

A second course in software engineering, delving deeper into software engineering concepts, while continuing to
introduce computer science fundamentals.

SE200
Software Engineering and Computing
III

Continues a broad introduction to software engineering and computing concepts.

CS103 Data Structures and Algorithms Any variant of CS 103 from the CCCS can be used (e.g., those from the imperativefirst or objects-first sequences).

CS105 Discrete Structures I
Standard first course in discrete mathematics. Taught in a way that shows how the material can be applied to software
and hardware design

CS106 Discrete Structures II
Continues the discussion of discrete mathematics introduced in CS105. Topics in the second course include predicate
logic, recurrence relations, graphs, trees, matrices, computational complexity, elementary computability, and discrete
probability.

MA271 Statistics and Empirical Methods Applied probability and statistics in the context of computing. Experiment design and the analysis of results.

2 Core
2.1 Package I

SE211 Software Construction Covers low-level design issues, including formal approaches

SE212
Software Engineering Approach to
Human Computer Interaction

Covers a wide variety of topics relating to designing and evaluating user interfaces, as well as some of the psychologi-
cal background needed to understand people

SE311 Software Design and Architecture Advanced software design, particularly aspects relating to distributed systems and software architecture

SE321 Software Quality Assurance Broad coverage of software quality and testing

SE322 Software Requirements Analysis Broad coverage of software requirements, applied to a variety of types of software

SE323 Software Project Management In-depth course about project management

2.2 Package II

SE213
Design and Architecture of Large
Software Systems

Modeling and design of large-scale, evolvable systems; managing and planning the development of such systems –
including the discussion of configuration management and software architecture

SE221 Software Testing
In-depth course on all aspects of testing, as well as other aspects of verification and validation, including specifying
testable requirements, reviews, and product assurance

SE312 Low-Level Design of Software Techniques for low-level design and construction, including formal approaches. Detailed design for evolvability

SE324 Software Process and Management
Software processes in general; requirements processes and management; evolution processes; quality processes;
project personnel management; project planning

SE313
Formal Methods in Software Engi-
neering

Approaches to software design and construction that employ mathematics to achieve higher levels of quality. Mathe-
matical foundations of formal methods; formal modeling; validation of formal models; formal design analysis; pro-
gram transformations

SE400
Software Engineering Capstone
Project

Provides students, working in groups, with a significant project experience in which they can integrate much of the
material they have learned in their program, including matters relating to requirements, design, human factors, profes-
sionalism, and project management

3 Completing
3.1 CCCS 2xx Intermediate fundamental computer science courses

3.2 Non-technical compulsory courses

NT272 Engineering economics This is a standard engineering economics course as taught in many universities.

NT181 Group dynamics and communication
Communication and writing skills are highly regarded in the software industry, but they are also fundamental to suc-
cess in collegiate careers.

NT291
Professional software engineering
practice

Professional Practice is concerned with the knowledge, skills, and attitudes that software engineers must possess to
practice software engineering in a professional, responsible, and ethical manner.

3.3
Mathematics courses that are not SE
core

-

3.4
Technical (SE/CS/IT/CE) courses
that are not SE core

-

3.5
Science/engineering courses cover-
ing non-SEEK topics

-

3.6 General non-technical courses -

IEEE Canadian Review - Summer / Été 2005 19

• A3: Requirements

“Software requirements identify the purpose of a system and the con-
texts in which it will be used [13].” Requirements play an important role
in software engineering since it is the initial conceptual model of a soft-
ware system. It is noteworthy that requirements for a software
engineering project are a moving target. Therefore, treatment of require-
ments as static items in software engineering courses should be avoided.

• A4: Design

System design is the process that creates a conceptual and abstract
model of a software system with its architecture and behaviors, which
meets users’ requirements. System design includes the specification
activities of internal interfaces among software components, architec-
tural design, data design, user interface design, and special tool design.

• A5: Software Construction

Software construction is a process that implements a system design by
composing suitable components on selected platform. This area covers
the knowledge on design refinement, component selection, coding, pro-
gramming languages, tests, and simulation.

• A6: Software Verification and Validation

Software verification and validation are processes that ensure the qual-
ity of software. The former checks whether an implementation of the
system conforms with the specifications of the system; The latter checks
whether an implementation of the system meets the customers require-
ments. In Verification and Validation, both static and dynamic
behaviors of a system should be checked.

• A7: Software Evolution

“Software evolution provides cost-effective mission support during pre-
and post-delivery stages while maintaining acceptable and satisfactory
behavior and validity of assumptions [13].” Software evolution may be
implemented by a number of planned and coherent releases for a given
system. A number of techniques may adopted in this area, such as pro-
gram comprehension, release planning, changes identification and
control, re-engineering, reverse engineering, maintenance review,
migration, system trial, and system replacement /retirement.

• A8: Software Process

Software process is a set of durable and repeatable practices in software
engineering, which cover the whole life-cycle of software development.
Software processes can be classified into three categories known as
organization, technology, and management. Software process may be
perceived as the infrastructure of process-based software engineering.
Software engineering process establishment, assessment, and improve-
ment are major knowledge and techniques for software engineering
students [14, 15].

• A9: Software Quality

Software quality is one of the basic characteristics and requirements in
software engineering. It is a pervasive concept that affects, and is
affected by all aspects of software development, support, revision, and
maintenance. Software quality can be modeled by a set of attributes
such as usability, reliability, safety, security, maintainability, flexibil-
ity, efficiency, performance and availability. Software quality is not
only implemented in code and other work products, but also influenced
by software engineering process and environment. Software quality
assurance is at the center of software engineering technologies and
practices.

• A10: Software Management

Software project management covers practices of project planning,
organization, and monitoring. Software project management may be
implemented by a set of organizational and management processes. The
essence of software management is the synchronization of process
activities in software engineering [15].

4.2 Knowledge Areas and Units of SEEK

Further detailed description of the SEEK knowledge areas is provided
in Table 2 where each knowledge area is refined by a number of units
[13]. The recommended load of each area and unit is given by the num-
ber of hours for study.

It is noteworthy that although software engineering programs are
offered with a wide range variety of loads, the SEEK recommendation
is 494 hours in total, which cover 20+ courses in a program.

5.0 Software Engineering Pedagogy
CCSE is featured not only by its knowledge structures, but also by its
studies on pedagogy. CCSE provide a comprehensive set of principles
for curriculum design, methodologies for software engineering course
development, and core themes and models of the software engineering
curriculum for both directors of software engineering programs and
instructors of software engineering courses.

The task of the Pedagogy Focus Area Group of IEEE/ACM JTF-SEC is
focused on curriculum recommendations based on SEEK. The peda-
gogy of CCSE encompasses the pedagogy guidelines, principles of
software engineering curriculum design, curriculum models, interna-
tional adaptation, and requirement for professional skills in addition to
SEEK

5.1 Pedagogy Guidelines for Software Engineering

A set of 18 guidelines has been developed in CCSE for supporting the
development of a specific software engineering program. The guide-
lines as shown in Table 3 can be classified into those for generic
pedagogy, curricula designers, instructors, and students.

5.2 Student Outcomes

A set of expected outcomes is specified in CCSE for an undergraduate
curriculum in software engineering. Graduates of an undergraduate soft-
ware engineering program are required to be able to meet the following
criteria [13]:

• Work as part of a team to develop and deliver executable artifacts,

• Understand the process of determining client needs and translating
them to software requirements,

• Reconcile conflicting objectives, finding acceptable compromises
within limitations of cost, time, knowledge, existing systems, and
organizations,

• Design appropriate solutions in one or more application domains
using engineering approaches that integrate ethical, social, legal,
and economic concerns,

• Understand and be able to apply current theories, models, and tech-
niques that provide a basis for software design, development,
implementation and verification,

• Negotiate, work effectively, provide leadership where necessary,
and communicate well with stakeholders in a typical software
development environment, and

• Learn new models, techniques and technologies as they emerge.

5.3 Program Accreditation

It is recognized that, in order to maintain a quality curriculum, a soft-
ware engineering program should be assessed on a regular basis. The
formal assessment and accreditation of a software engineering program
may cover the following areas: faculty, curriculum, laboratory and com-
puting resources, students, institutional support, and program
effectiveness. Accreditation may be carried out by periodic external
reviews of programs. The aim of accreditation is to assure that a soft-
ware engineering program meets the minimum requirement as adhered
to the standard of a certain accreditation organization.

A number of curriculum guidance and accreditation criteria are avail-
able from accreditation organizations of a variety of nations and sectors
[2, 6, 7, 8, 11]. For example, the IEEE/ACM Accreditation Criteria for
Software Engineering may be referred to [17].

6.0 Conclusions
This paper has reported the design and development of the IEEE/ACM
Computing Curricula - Software Engineering (CCSE), and presented
the philosophy and insides behind CCSE based on the experience as a
member of the committee. The history of CCSE development and
related resources of CCSE have been reviewed.

CCSE has been developed to encompass the guiding principles, curricu-
lar models, software engineering education knowledge areas,
curriculum design, pedagogy guidelines, professional practice, program
implementation and accreditation.

20 IEEE Canadian Review - Summer / Été 2005

Table 2: SEEK Knowledge Areas and Knowledge Units

No.
Knowledge

Area
Knowledge Unit

Rec’d
load (hrs)

1
Computing
Essentials

Computer Science foundations 140

172
Construction technologies 20

Construction tools 4

Formal construction methods 8

2
Mathematical &
Engineering
Fundamentals

Mathematical foundations 56

89Engineering foundations for software 23

Engineering economics for software 10

3
Professional
Practice

Group dynamics / psychology 5

35Communications skills (specific to SE) 10

Professionalism 20

4
Software
Modeling and
Analysis

Modeling foundations 19

53

Types of models 12

Analysis fundamentals 6

Requirements fundamentals 3

Eliciting requirements 4

Requirements specification & documentation 6

Requirements validation 3

5
Software
Design

Design concepts 3

45

Design strategies 6

Architectural design 9

Human computer interface design 12

Detailed design 12

Design support tools and evaluation 3

6
Software
V & V

V&V terminology and foundations 5

42

Reviews 6

Testing 21

Human computer UI testing and evaluation 6

Problem analysis and reporting 4

7
Software
Evolution

Evolution processes 6

10Evolution activities 4

Evolution processes 6

8
Software
Process

Process concepts 3
13

Process implementation 10

9
Software
Quality

Software quality concepts and culture 2

16

Software quality standards 2

Software quality processes 4

Process assurance 4

Product assurance 4

10
Software
Management

Management concepts 2

19

Project planning 6

Project personnel and organization 2

Project control 4

Software configuration management 5

Total 494

foundations of software engineering [10, 14-16].

7.0 Acknowledgements
CCSE and SEEK are the intermediate results of an international
effort carried out by IEEE/ACM JTF-SEC. The author would
like to acknowledge the group and a lot of interesting discus-
sions within it on the architecture and pedagogy of the software
engineering curricula.

8.0 References
[1]. ACM/IEEE-Curriculum 2001 Task Force, Computing Cur-

ricula 2001, Computer Science, December 2001. (http://
www.computer.org/education/cc2001/final/index.htm)

[2]. British Computer Society, Guidelines On Course Exemp-
tion & Accreditation For Information For Universities And
Colleges, August 2001. (http://www1.bcs.org.uk/
link.asp?sectionID=1114)

[3]. Davis, G.B., et. al., IS’97 Model Curriculum and Guide-
lines for Undergraduate Degree Programs in Information
Systems, Association of Information Technology Profes-
sionals, 1997. (http://webfoot.csom.umn.edu/faculty/
gdavis/curcomre.pdf)

[4]. Gorgone, J. T., et al., IS 2002: Model Curriculum for
Undergraduate Degree Programs in Information Systems,
published by the ACM, 2002.

[5]. IEEE/ACM (2001), Software Engineering Body of Knowl-
edge (SWEBOK), V.0.95, May, pp. 1-213.

[6]. Institution of Engineers, Australia, Manual for the Accredi-
tation of Professional Engineering Programs, October
1999. (http://www.ieaust.org.au/membership/res/down-
loads/AccredManual.pdf)

[7]. Japan Accreditation Board for Engineering, Criteria for
Accrediting Japanese Engineering Education Programs
2002-2003. (http://www.jabee.org/english/OpenHomePage/
e_criteria&procedures.htm)

[8]. King, W.K., Engel, G., Report on the International Work-
shop on Computer Science and Engineering Accreditation,
Salt City, Utah, 1996, Computer Society, 1997

[9]. ACM/IEEE-Curriculum 2001 Task Force, Computing Cur-
ricula 2003: Guidelines for Associate-Degree Curricula in
Computer Science, Dec 2002. (http://www.acmtyc.org/
reports/TYC_CS2003_report.pdf)

[10]. Bagert, D., et. al., Guidelines for Software Engineering
Education, Version 1.0, CMU/SEI-99-TR-032, Software
Engineering Institute, Carnegie Mellon University, 1999.

[11]. Canadian Engineering Accreditation Board, Accreditation
Criteria and Procedures, Canadian Council of Professional
Engineers, 2002. (http://www.ccpe.ca/e/files/
report_ceab.pdf)

[12]. IEEE STD 610.12-1990, IEEE Standard Glossary of Soft-
ware Engineering Terminology, IEEE Computer Society,
1990.

[13]. IEEE/ACM JTF-SEC (2003), Computing Curricula - Soft-
ware Engineering (CCSE), http://sites.computer.org/ccse/.

[14]. Wang, Y. (2000), Software Engineering Processes: Princi-
ples and Applications, CRC Software Engineering Series,
Vol.1, CRC Press, USA.

[15]. Wang, Y. (2005), Software Engineering Foundations: A
Transdisciplinary and Rigorous Perspective, CRC Soft-
ware Engineering Series, Vol. 2, CRC Press, USA.

The Software Engineering Education Knowledge (SEEK), a key component of
CCSE, has been elicited by a set of knowledge areas that cover all aspects of
software engineering.

CCSE has been featured not only by its knowledge structures, but also by its
studies on pedagogy for software engineering. CCSE has provided a compre-
hensive set of principles for curriculum design, methodologies for software
engineering course development, and core models of the software engineering
curriculum for both directors of software engineering programs and instructors
of software engineering courses. Although CCSE is a comprehensive software
engineering curriculum, a number of important areas have not yet been mod-
eled in it, such as software engineering notations, measurement, and theoretical

IEEE Canadian Review - Summer / Été 2005 21

[16]. Wang, Y. (2005), Software Engineering Measure-
ment and Analysis: An Applied Framework of
Software Metrics, CRC Software Engineering Series,
Vol. 3, CRC Press, USA, to appear.

[17]. Barnes, B., et al., “Draft Software Engineering
Accreditation Criteria”, Computer, April 1998.

Yingxu Wang is Professor of
Software Engineering and Cogni-
tive Informatics, and Director of
Theoretical and Empirical Soft-
ware Engineering Research Center
(TESERC) at the University of
Calgary. He received a Ph.D. in
Software Engineering from The
Nottingham Trent University, UK,
in 1997, and a B.Sc. in Electrical
Engineering from Shanghai
Tiedao University in 1983.

Dr. Wang is a Fellow of WIF, a P.Eng, a Senior
Member of IEEE, and a member of ACM, ISO/IEC
JTC1, and the Canadian Advisory Committee (CAC)
for ISO. He is the founder and steering committee
chair of the annual IEEE International Conference on
Cognitive Informatics (ICCI). He is editor in chief of
World Scientific Book Series on Cognitive Informat-
ics and the editor of CRC Book Series in Software
Engineering. He was the Chairman of the Computer
Chapter of IEEE Sweden during 1999-2000. He has
accomplished a number of EU, Canadian, and indus-
try-funded research projects as principal investigator
and/or coordinator, and has published over 250 papers
and 6 books in software engineering and cognitive
informatics. He has won dozens of research achieve-
ment, best paper, and teaching awards in the last 25
years, particularly the IBC 21st Century Award for
Achievement “in recognition of outstanding contribu-
tion in the field of Cognitive Informatics and
Software Science.” The author can be reached at
yingxu@ucalgary.ca

About the author

Table 3: IEEE/ACM CCSE Guidelines for Curricula Design

No. User Guideline

1 Instructors
Instructors must have sufficient relevant knowledge and experience and
understand the character of software engineering.

2

Designers

Curriculum designers and instructors must think in terms of outcomes.

3
Curriculum designers must strike an appropriate balance between cov-
erage of material, and flexibility to allow for innovation.

4
Many SE concepts, principles, and issues should be taught as recurring
themes throughout the curriculum to help students develop a software
engineering mindset.

5
Learning certain software engineering topics requires maturity, so these
topics should be taught towards the end of the curriculum, while other
material should be taught earlier to facilitate gaining that maturity.

6

Students

Students must learn some application domain or domains outside of
software engineering.

7
Software engineering must be taught in ways that emphasize its engi-
neering nature.

8
Students should be trained in certain personal skills that transcend the
subject matter.

9 Students should be instilled with the ability and eagerness to learn.

10 Software engineering must be taught as a problem-solving discipline.

11
The underlying and enduring principles of software engineering should
be emphasized, rather than details of the latest or specific tools.

12
The curriculum must be taught so that students gain experience using
appropriate and up-to-date tools, even though tool details are not the
focus of the learning.

13
Material taught in a software engineering program should, where possi-
ble, be grounded in sound research and mathematical or scientific the-
ory, or else widely accepted good practice.

14 The curriculum should have a significant real-world basis.

15
Ethical, legal, and economic concerns, and the notion of what it means
to be a professional, should be raised frequently.

16

General

In order to ensure that students embrace certain important ideas, care
must be taken to motivate students by using interesting, concrete and
convincing examples.

17
Software engineering education in the 21st century needs to move
beyond the lecture format: It is therefore important to encourage consid-
eration of a variety of teaching and learning approaches.

18
Important efficiencies and synergies can be achieved by designing cur-
ricula so that several types of knowledge are learned at the same time.

The International Conference for Upcoming Engineers (ICUE) is a plat-
form where students and faculty members work together in organizing a
conference, and a forum to exchange ideas and promote learning and
participation amongst undergraduate students, graduate students and
faculty researchers.

After a very successful 3rd annual ICUE, the Steering Committee
chaired by Dr. Sri Krishnan (Ryerson University) decided to make this
a travelling conference in order to benefit students in other regions as
well. The steering committee decided that the proposal from University
of Windsor IEEE Student Branch was the strongest and hence the plan-
ning for the 4th annual ICUE began in December 2005.

The 4th annual ICUE was held in the University of Windsor on May
20th-21st 2005 thanks to the co-operation and support from the Univer-
sity of Windsor’s Department of Electrical and Computer Engineering,
Ryerson University, IEEE Canadian Foundation, IEEE Region 4, IEEE
Toronto Section and IEEE South-eastern Michigan Section. Funding
was also received from DaimlerChrysler 3-E Student Activities Fund
(Platinum Sponsor), University of Windsor Student Alliance (Platinum
Sponsor), JMP Engineering (Gold Sponsor), and the Alumni Associa-
tion (Silver Sponsor).

The 2-day conference brought together prominent individuals in vari-
ous fields of engineering and provided students with an opportunity to
learn and interact. It consisted of a wireless communication session,
automotive session, other technical and non-technical talks by distin-
guished lecturers, design demonstrations, paper contest, a wine and
cheese social and a banquet and awards ceremony.

The wireless communication session had 4 speakers including Dr.
Gerry Chan, Vice President, Terrestrial Wireless Systems at Commu-
nications Research Centre (CRC). The presentations were followed by
a panel discussion which allowed the audience to interact with the
speakers. The automotive session followed a similar format and
included speakers from both industry and academia. Apart from these,
there were presentations on various other technical topics such as
“Making Mobile Robotics Help People” by Dr. McIsaac from Univer-
sity of Western Ontario.

In addition to technical talks, seminars on non-technical topics such as
career growth, job search techniques, and stress management were also
included. Keynote speaker Jim Watson, an IEEE S-PAC National

INTERNATIONAL CONFERENCE FOR UPCOMING ENGINEERS (ICUE) 2005

continued on page 29

