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Autonomous Flight: State-of-the-art Estimation and Guidance Systems

nmanned aerial vehicles (UAVs) are encountered in an
increasing number of civilian and military applications like:
surveillance, communication relay, target designation, and
payload delivery [1]. Such applications require the UAVs to

be equipped with a guidance system. What is most often termed as
“guidance” is the combination of a noise filter/estimator with a guidance
policy or guidance law [2]. The objective of this guidance system is to
deliver a control command that will steer the UAV toward a desired state
(or location) that can vary in time. This guidance command is calculat-
ed online from a feedback signal involving the current state of the UAV
and the desired state. Whenever the full feedback signal is available to
measurements, the guidance law is in the form of an output feedback
controller; there is no estimation system required (although one could
still be beneficial to filter the noises). Otherwise, the feedback signal is
only partially subject to measurements and the full feedback signal must
be reconstructed by introducing an estimation system prior to the guid-
ance law, see Fig.1.

The estimation system has for objective to reconstruct online a full feed-
back signal based on: (i) partial measurements, (ii) some assumptions
about the dynamics, and (iii) some assumptions about the measurement
and dynamical uncertainties.

The dynamical uncertainty is the difference between the true dynamics
and that of the dynamical model assumed by the estimation and guidance
system. Examples of uncertainties are the noise in the instruments and
the unmodeled phenomena like unknown aerodynamic coefficients or
unknown inputs (e.g., a gust of wind that displaces the UAV or a bias in
an actuator). The assumptions (ii)-(iii) about the uncertainties may be
time-varying.

This article discusses some of the interactions between the estimation
systems and the guidance law, and presents possible state-of-the-art
solutions currently investigated. An effective selection of estimation and
guidance systems should provide close-to optimal closed-loop flight per-
formance, while allowing for a real-time implementation on-board a
UAV. The selection of a Kalman filter in the estimation system is specif-
ically discussed with respect to other most advanced estimators. Finally,
the article illustrates some of the effects encountered in the control loop
when employing advanced estimators.

2. The Control Loop
Fig. 1 shows a typical feedback control system enabling a UAV to reach
a target. In this example, an estimation system reconstructs the feedback
signal from the measurements. Whenever the uncertainties are repre-
sented using a stochastic description (like a Gaussian uncertainty), the
estimation system involves a sequence of two components illustrated in
Fig. 2. The first component is an estimator whose output is a probabili-
ty density function (p.d.f.), this p.d.f. associates a domain of candidate
feedback signals to the probability of being the exact signal (i.e., the sig-
nal if there was no uncertainties). An example p.d.f. is shown in Fig. 3
in which two neighborhoods of most probable candidate signals are indi-
cated by the peaks. A physical interpretation of such p.d.f. is that due to
noises and other uncertainties, the exact location of a target is never
exactly known. Thus, engineers and scientists have to find ways to best
use this uncertain information on the target state, such as its location, and
that involves stochastic considerations.

The second component of the estimation system is a selection criterion
to choose a specific candidate feedback signal from the domain of
admissible candidate feedback signals. The chosen signal becomes the
reconstructed feedback signal. The selection process is conditioned by
the p.d.f. Two common selection criteria are: (i) the adoption of the point
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1.0 Introduction

U

Unmanned aerial vehicles (UAVs) are rapidly becoming a strategic
asset of today’s military forces and an enabler of transformation for
the civilian airspace community.

In autonomous flight, accuracy from the guidance system is neces-
sary for performance and safety reasons. Increased accuracy can be
achieved by improving the information processing and by account-
ing for the uncertainties. With the ever increasing on-board com-
putational capabilities, a growing number of sophisticated estima-
tion and guidance algorithms are becoming feasible. However,
along with the new possibilities offered by these algorithms, new
challenges are also encountered. This article describes some of
these possibilities and challenges and presents some of the investi-
gated solutions to optimize their application. Of particular interest
is the selection of the estimation algorithm with respect to the
uncertainties and the dynamics, and the coupling between the esti-
mation and guidance systems.

Les drones, ou avions sans pilote, sont maintenant devenus des
atouts stratégiques des forces militaires et sont en voie de trans-
former l’espace aérien civil. En vol autonome, un guidage de pré-
cision est nécessaire pour des raisons de performance et de sécu-
rité. Un guidage de précision accrue peut être obtenu en améliorant
le traitement de l’information et en tenant compte des incertitudes.
Avec les capacités de calcul embarquées sans cesse croissantes, un
nombre accru d’algorithmes d’estimation et de guidage sophis-
tiqués deviennent accessibles. Toutefois, de nouveaux défis
accompagnent les nouvelles possibilités offertes par ces algo-
rithmes. Cet article décrit certaines de ces possibilités et des défis
associés et présentes certaines des solutions étudiées pour opti-
miser leur application. La sélection de l’algorithme d’estimation
par rapport aux incertitudes et à la dynamique est ici d’un intérêt
particulier, de même que les interactions entre les systèmes d’esti-
mation et de guidage.
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at the mean of the p.d.f., the so-called minimum mean square estimate
(MMSE), and (ii) selecting the point at the maximum of the p.d.f., the
so-called maximum a posteriori probability (MAP) estimate [3].

After reconstruction of the feedback signal, the guidance system issues
a control command. This control command is implemented by the UAV
through an autopilot. The choice of the estimation system with respect to
the guidance system is discussed in the following sections.

3. The Kalman Filter
The Kalman filter (KF) is a commonly encountered estimator that
describes the dynamics and the measurements by a linear model, while
the measurements and the dynamical uncertainties are represented by
Gaussian distributions. The output of the KF is always a Gaussian p.d.f.
This KF can be calculated in recursive form (see Fig. 4) allowing for
real-time implementation.

In nonlinear systems, the Kalman filter can be applied by linearization of
the nonlinear equations to which a sufficient Gaussian uncertainty is added
to represent the linearization error. Whenever the linearization is state-
dependent, the estimator is called an extended Kalman filter (EKF).
Historically, the KF and the EKF are distinguished as many of the KF relat-
ed proofs do not carry over to state-dependent linearizations. However,
recent advances have now proven the convergence of the EKF [4].

A significant shortcoming of the KF is the necessity of describing the
uncertainties by Gaussian distributions. In au tonomous flight applica-
tions, important uncertainties are not accurately represented by Gaussian
distributions, like those that are correlated in time (e.g., flight maneu-
vers). In the next section, more advanced estimators applicable to broad-
er classes of uncertainties are discussed.

4. More Advanced Estimators
Several recursive estimators with manageable computational requirements
have the ability to calculate non-Gaussian p.d.f., such as the p.d.f. illus-
trated in Fig. 3. One class of such estimators delivers a non-Gaussian p.d.f.
by running a bank of KF in parallel, each KF assumes a different model
for the system. The p.d.f. is obtained as a weighted sum of Gaussian p.d.f.;
each Gaussian p.d.f. being calculated by its own KF, see Fig. 5.

From this approach, several different algorithms can be derived depend-
ing on which procedures are selected to calculate the weights and to re-
initialize the bank of KF. A common algorithm in this class is the so-
called interacting multiple model (IMM) estimator; the last is known to
deliver an advantageous ratio computation/performance [3]. The IMM
estimator applies to hybrid systems and it assumes that: (i) there are sev-
eral behavioral modes for the system, and (ii) the system transitions
between these modes according to a Markov chain. The assumption (i)
is accounted for by the bank of KF: the model adopted by each KF is one
of the admissible behavioral modes. The assumption (ii) is accounted for
by the selected re-initialization procedure. In autonomous flight applica-
tions, each behavioral mode can represent a different flight regime. The
IMM is found more suitable than the KF for tracking of uncooperative
targets whose flight regime are uncertain [5].

Another class of estimators called particle filters (PF) applies to general
nonlinear systems with non-Gaussian uncertainties. The PF is based on
the fact that a p.d.f. can be expressed as the solution of an integral equa-
tion [6]. In few systems, this integral can be solved analytically. Such is
the case when the system is linear with Gaussian uncertainties; the ana-
lytical solution is then the KF. In the case of the PF, an approximate
numerical solution of the integral equation is sought instead of an exact
analytical solution. In essence, the PF employs the exact model but
approximates the calculation of the p.d.f.; the KF approximates the
model and calculates an exact p.d.f. with respect to the approximated
model.

The PF obtains the numerical solution by recursive Monte Carlo inte-
gration involving a set of so-called particles. At each iteration, the parti-
cles are evolved using the nonlinear model with non-Gaussian uncer-
tainties. Each particle is assigned a weight based on the received mea-
surements. From these weights, a p.d.f. is calculated and the set of par-
ticles is decimated and re-sampled. Different techniques can be
employed for the decimation and re-sampling of particles, and for the
calculation of the weights. The PF algorithm is depicted in Fig. 6. The
algorithm is recursive and requires a large number of particles to deliv-
er an accurate solution; the latter may involve large computational
requirements.

The PF is of interest in autonomous flight applications in situations
where the nonlinear dynamics is poorly approximated by linearization,
or when significant uncertainties are poorly represented by Gaussian
approximations.

5. Selection Criterion and Guidance Law
The guidance law requires a feedback signal to be reconstructed from the
measurements. By employing an estimator to process the measurements,
the reconstructed feedback signal is delivered by applying a selection
criterion to the calculated p.d.f. When the estimation system employs the
KF to calculate the p.d.f., the selection criteria MMSE and MAP deliver
the same reconstructed feedback signal; that is, the average point of the
p.d.f. coincides with the unique maximum of the p.d.f. Essentially, the
tuning of the estimation and guidance system is limited to the optimiza-
tion of the KF and of the guidance law. By comparison, when the esti-
mation system employs a more advanced estimator like the IMM or the
PF, the reconstructed feedback signals varies with the selection criterion;
this provides an additional level for optimization.

The most common approach for optimization of the estimation system
and guidance law in the control loop is to optimize them independently
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and to employ the MMSE criterion to reconstruct the feedback signal
from the p.d.f. Although the couplings are then neglected, such an
approach is optimal in linear quadratic Gaussian systems by virtue of the
separation principle [7]. In broader classes of nonlinear systems with
non-Gaussian uncertainties, the separate optimization of the estimator
was shown to be still optimal, but it was also demonstrated that the opti-
mization of the selection criterion and of the guidance system should
then be coupled with the employed estimator [8]. The latter argument
means that a modification to the estimator may call for modifications in
the selection criterion and in the guidance law.

Several state-of-the-art optimizations in the control loop accounts for the
coupling between the estimation system and the guidance law. One sim-
ple approach is to optimize the guidance law by assuming that the esti-
mation system introduces a delay (or a lag) in the feedback signal. In
autonomous flight applications, the approximation by a delay of the
closed-loop dynamics introduced by the estimator was reported success-
ful [9]. A second class of state-of-the-art approaches attempts to opti-
mize the guidance law in such a way as to steer the UAV on a trajectory
that will increase the information contained in the measurements, while
preserving the satisfaction of the guidance objective [10]. Unfortunately,
both requirements can be contradictory in autonomous flight applica-
tions and a trade-off may be necessary.

Another class of state-of-the-art approaches attempts to op timize the
selection criterion and the guidance law with respect to both the p.d.f.
and the control effort capabilities [11], [12]. For example, an alternative
adaptive selection criterion (called HPI) is presented in [11] where it is
shown to deliver better performance than the MMSE and MAP criteria
with a non-Gaussian p.d.f. Simulation results illustrating this phenome-
non are displayed in Fig. 7.

In the figure, the same estimator (with non-Gaussian p.d.f.) and guid-
ance law are common to all the curves, only the selection criterion for
the reconstructed feedback signal changes from one curve to another.

6. Concluding Remarks
The paper described some of the issues and challenges involved in the
selection of the estimation system and guidance law in autonomous
flight applications. The coupling of the estimation system with the guid-
ance law was of particular interest. For instance, it was pointed out that
advanced estimators capable of delivering non-Gaussian p.d.f. provide
for new freedom and new challenges in optimizing the closed-loop sys-
tem. With the ever increasing on-board computational capabilities, it is
believed that many of these advanced estimators and control techniques
will be feasible in a growing number of applications.
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Figure 7:  Example of closed-loop performance when modify-
ing the selection criterion. The scenario is that of a moving tar-
get to be intercepted. To evade, the target deploys a decoy. The
x-axis is the deployment time instant of the decoy. The whole
engagement last 10 [s]. The estimator and guidance systems are
the same in all the curves; the estimator delivers a non-
Gaussian p.d.f. Three selection criteria are considered: MMSE
(green line), MAP (red line), and HPI (blue line). 
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