
IEEE Canadian Review - Autumn / Automne 1999 9

1.0 Introduction
requently, data acquisition processes involve different types
of device controls. However, most commonly used data
acquisition software does not include general-purpose
device control drivers or optional add-ons. So, the driver

interface has to be developed by the user depending on the application.
This paper describes two methods developed at the Florida Institute of
Technology to control a stepper motor utilizing the commonly used PC
data acquisition toolkit, LabVIEW 5.0, and parallel port or general-pur-
pose digital I/O port of a data acquisition board. The first method uses
digital I/O port of SCXI-1200 data acquisition unit (from National
Instrument). The second method uses the same software but compiling
the external code (C++) and controls the motor though a parallel port.
The source code used for the second method can be used as a stand-
alone motor control, without using any data acquisition card or the data
acquisition software. With use of a translation module presented in this
paper, most of the general-purpose stepper motor can be controlled
using only two digital signal lines and a digital ground.

Any programming language such as BASIC or C or data acquisition
software with digital I/O can be used for the motor control.

2.0 Motion Control System
Figure 1 shows the general schematic of motion control system. It con-
sists of an 8-bit digital communication port, a driver or translation
module, and a stepper motor. A parallel port (or printer port) or digital
I/O ports on the data acquisition board can be used to control the step-
per motor via translation module. Two communication methods are
provided since typical external data acquisition boards are interfaced to
the computer via parallel port.

Figure 1: Schematic of Motion Control Setup

Two digital lines and a digital ground are connected to the translation
module. One digital line controls the step and other controls the direc-
tion. The translation module converts the signal from the
communication port to a specific winding energizing sequence to step
the motor. The output signal from the translation module is sent to each
winding (typically 2 sets of winding on the stepper motor). Details of
the wiring, signals, and program code are described in the following
sections.

2.1 Parallel Port Communication

An 8-bit data signal is sent to the translator module to move the stepper
motor. To send 8-bit data to a specified port, port address and 8-bit
hexadecimal code are required. Table 1 shows the data status addresses
for parallel port (or LPT ports) of a PC.

Pin #2 (data 1), pin #9 (data 8), and pin #20 (ground) of LPT1 (378

Stepper Motor

Translation Module

Digital Communication Port
(Digital I/O or LPT port)

by N. Shinjo, L. Buist and C. S. Subramanian
Florida Institute of Technology, Melbourne, Florida

Stepper Motor Control With a PC-Based Data Acquisition Toolkit

Computers / Ordinateurs

LabVIEW est de plus en plus utilisé dans les mondes universitaire
et industriel, particulièrement pour la saisie de données et le con-
trôle de procédés. Régulièrement, des applications LabVIEW
doivent être développées pour travailler avec du matériel étranger
tel un moteur pas-à-pas Slo-Syn. Malheureusement, il n'existe pas
de procédures simples et claires pour développer ces routines de
gestion de mouvement. Cet article décrit une méthode pour con-
trôler un moteur pas-à-pas en utilisant le logiciel LabVIEW version
5.0 et le système de saisie de données SCXI de National
Instrument.

The use of LabVIEW is on the increase in universities and indus-
tries especially for data acquisition and process control.
Frequently, there is a need to develop LabVIEW application soft-
ware to work with foreign hardware, like a Slo-Syn stepper motor.
Unfortunately, simple and clear procedures to develop motion con-
trol routines are not easily available. This paper describes a method
developed to control a stepper motor using the LabVIEW 5.0 soft-
ware and the National Instrument SCXI data acquisition system.

hex) port was used to send the signals to the translation module. The pin
#2 controls the step and the pin #9 sets the rotational direction. It should
be noted that the any combination of 2 pins between # 2 to #9 can be
used to control the motor. Table 2 shows an example of parallel port
pin-outs. In the present case the following sequence is employed.

• The pin states 1 and 0 (pin # 2 high state and pin # 9 low state) ini-
tialize the forward (or clockwise) step.

• The pin states 1 and 1 (both pin # 2 and # 9 are high) initialize the
backward (or counterclockwise) step.

• The pin states 0 and 0 (both pin # 2 and # 9 are low) followed by the
state 1-1 or 1-0 executes the step.

Thus, the following 2 statements send the signals to LPT1 and move the
motor one step (typically 1.8°). Note that the command '_outp()' only
works for Microsoft Visual C++. The other compiler may use different
command.

_outp(0x378, 1); binary representation of 1 = 00000001
_outp(0x378, 0); binary representation of 0 = 00000000

The first statement sets the 1st bit to 'high' state, rest of the bits are at
'low' state (2nd to 8th bits). The second statement sets all the bits to zero.

Table 1: Data Status Addresses

Port Number Data (hex) Status (hex) Control (hex)

LPT 1 378 379 37A

LPT 2 278 279 27A

F
Tuto

rial

10 IEEE Canadian Review - Autumn / Automne 1999

Table 2: Pin Connection and Description for Parallel interface to IBM PC (Hall, 1991)

Pin # Signal Description Signal Direction

1 STROBE STROBE pulse to read data in IN/OUT

2 DATA 1 IN/OUT

3 DATA 2 IN/OUT

4 DATA 3 IN/OUT

5 DATA 4 IN/OUT

6 DATA 5 IN/OUT

7 DATA 6 IN/OUT

8 DATA 7 IN/OUT

9 DATA 8 IN/OUT

10 ACKNLG A ‘low’ indicates that data has been received & printer is ready to accept other data. OUT

11 BUSY A ‘high’signal indicates that the printer cannot receive data. OUT

12 PE A ‘high’ signal indicates that the printer is out of paper. OUT

13 SLCT This signal indicates that the printer is in the selected state. OUT

14 AUTO FEED XT This signal being at ‘low’ level, the paper is automatically fed one line after printing. IN

15 NC Not used -

16 OV Logic GND level -

17 CHASIS GND Printer chassis GND -

18 NC Not used -

19 GND -

20 GND -

21 GND -

22 GND -

23 GND -

24 GND -

25 GND -

The sequence of these two statements activate the flip-flop gate to flip.
This causes the motor to move one step.

Similarly, the sequence of following two statements move the motor in
reverse direction (counterclockwise) one step. The first statement
reverses the direction of the rotation. The second statement activates the
flip-flop circuit and sends a signal to the stepper motor.

_outp(0x378, 255); binary representation of 255 = 11111111
_outp(0x378, 0); binary representation of 0 = 00000000

2.2 Translation Module

The translation module generates pulse signals as and when it receives
the control data from the computer. The pulse in (from high to low
state) activates the circuit and sends signals to two sets of windings on
the stepper motor. The first set of signals changes the 1st winding polar-
ity and the 2nd set of signals changes the 2nd winding polarity, causing
the motor to rotate one step (1.8°). When the circuit is powered, it sup-
plies the power to the windings even if it is not turning. The translation
module circuit diagram is shown in Figure 2.

Ground

These signals represent information of the 1st to 8th bits of parallel data respectively.
Each signal is at ‘high’ level when data is logical ‘1’ and ‘low’ when logical ‘0’.

4

PC Inputs

31

4
7
0

4
7
0

MCT-6
OptoCoupler

4

2

1

3

8

7

5

6

1
0
k

1
0
k

 Screw Terminal

Power
Ground

Step

Direction

+12V

Gnd

4

2

1

12

11

14070

14070

D

Q

Q

K

SET

CLR

D

Q

Q

K

SET

CLR

2

6

5

7

14

330

330

330

330

d

s

g

d

s

g

d

s

g

d

s

g

2

2

2

Stepper Motor
Supply Voltage

Stepper Motor

1
0
0
0
m

f

14013

14013

Figure 2: Translation Module Circuit Diagram

IEEE Canadian Review - Autumn / Automne 1999 11

2.3 Stepper Motor

A stepper motor is a device that positions loads by operating in discrete
increments (or steps). The stepping is accomplished by switching the
power to the motor windings so that the motor phases are energized in a
specific sequence. The Figure 3 shows the typical wiring diagram of the
stepper motor (2 winding sets).

Figure 3: Schematic of Stepper Motor Windings

Table 3 shows the switching sequence required to turn the motor
through one step (typical step size is 1.8°), and 200 steps are used for
one complete revolution, i.e. 360° turn. To step in the reverse direction,
the switching sequence is reversed (i.e. 4, 3, 2, 1).

.

1: high state, 0: low state

The stepper motor is capable of operating in a half step (0.9°) mode
also. However, that would require additional switching sequence and a
different translation module circuitry. Further, the half-step reduces the
holding torque of the motor. For present application only the full-step
increment (1.8°) is used.

3.0 Motion Control Using Computer Parallel Port
The schematic setup of the parallel port motor control is described in
Section 2.1. With use of the translation module described in Section
2.2, the following lines of code executes one step in a specified direc-
tion. The following code is written for Microsoft Visual C++, a

Table 3: Winding Sequence

Steps SW1 SW2 SW3 SW4

1 1 0 1 0

2 1 0 0 1

3 0 1 0 1

4 0 1 1 0

B

H

A

G

C

E

D

F

2

8

1

7

3

5

4

6

SW1

SW4

SW3

SW2

command for parallel port communication varies with the language, for
example Borland C++ uses 'outp' (port address in hex, binary code) and
the Visual Basic uses 'out' (port address in dec, binary code). By con-
trolling the loop execution time, the speed of the stepping can be
controlled. For more accurate stepping time control, a timer command
(wait statement) can be used instead of a loop command.

do loop
_outp(0x378, 0 or 255);
(an empty loop to adjust the timing between the command)
_outp(0x378, 0)
(an empty loop to adjust the timing between the command)
(an empty loop or timer to adjust loop execution time)
end loop

The first '_outp' command sets the direction of the motor rotation and
the second executes the step. It should be noted that for a faster CPU, it
may require empty loops (or timing command) to create a delay
between each command execution. Rapid command execution can
cause erratic stepper motor motion. For the motor used in the present
application, the ideal timing between commands was 100 ms.

3.1 Motion Control Using LabVIEW

The basic setup for the parallel port motion control using LabVIEW
(Figure 4) is the same as the conventional setup described in Section
2.1. The exact same code described in the previous section can be used
for the control. The only difference is that instead of compiling the code
as a stand-alone executable program it is compiled as a LabVIEW exe-
cutable program. In this way, the motion control routine can be used
along with data acquisition routines developed with the LabVIEW. For
this, the LabVIEW function called the Code Interface Node (CIN) is
used to link the external code written in a conventional programming
language to LabVIEW [3,4]. LabVIEW calls the executable code when
the node executes, passing input data from the block diagram to the exe-
cutable code, and return the data from the executable code to the block
diagram. The code can be compiled as either single-threaded or multi-
thread operations. Only the following compilers can be used to create
CIN.

• The Microsoft Visual C++ compiler
• Symantec C compiler
• The Watcom C/386 compiler for Windows 3.1.

The external code (C++) loaded into the LabVIEW's CIN is simplified
to minimize lockup of the program while the CIN code is executing.
The CIN code executes only one step at a time and returns to the motion
control VI. The one step is equivalent to 1.8° rotation. To do multiple
steps, the CIN was called multiple times. Inserting the loop delay in the
motion control VI, the speed of the subsequent steps can be controlled.
The drawback of this control configuration is that the stepping speed
varies with the CPU speed. This can be improved by placing the loop
structure (for the number of steps you want to execute) in the C code.

3.1.1 Description of 'Make File'

Compilers need instructions on how to build a project or a file. These
instructions come in the form of make files. LabVIEW installs a make
file in the LabVIEW\cintools directory that has instructions for the com-
pilers to build a generic CIN (ntlvsb.mak); but other compilers will need
some additional instructions on how to build a CIN. A specific make
file, combined with the LabVIEW generic make file, will instruct the
compiler to build a .lsb file (instead of a .exe file). The .lsb file is used

Figure 4: Schematic of Stepper Motor Control Setup Using Computer Parallel Port

Computer
(LabVIEW 5.0)

Parallel Motor Control.vi

Parallel Port
Pin# 2
Pin# 9
GND

Translation Module Stepper Motor

12 IEEE Canadian Review - Autumn / Automne 1999

to interface the external code such as C to LabVIEW program. The CIN
only accepts the external code with .lsb extension (it does create .c
extension file but it does not accept .c extension file as a CIN source
code). Additional information can be found on “LabVIEW Code Inter-
face Reference Manual” [2].

3.1.2 Steps for Creating a CIN

The procedures for creating a CIN differs with the platform and com-
piler used. In this section, the procedures for using Microsoft Windows
95 with Microsoft Visual C++ compiler are illustrated. For more detail
and other compiler's procedure, refer to “LabVIEW Code Interface Ref-
erence Manual”.

1. Prior to the CIN generation, determine the data and the data format
(i.e. integer, floating point, strings, etc.) to be passed to and
received from the CIN.

2. Write a C code and verify that there are no errors in the code.

3. From the LabVIEW VI diagram, select a code interface node icon
(Functions => Advanced) and place on the diagram. It should look
like in Figure 5.

Figure 5: Code Interface Node Icon

4. Initially, the CIN has one set of terminals (a set of input and output
terminals). The additional terminals can be added by dragging the
bottom left or right corner of the icon or by selecting “Add Parame-
ters” from the CIN terminal pop-up menu (right mouse click on the
parameter terminals) (Figure 6).

Figure 6: CIN Icon with Multiple Input and Output

5. Connect the terminals to control and indicator panels (Figure 7).

Figure 7: CIN Icons with Terminals

6. Select “Create .C File” from the pop-up menu (right click on the
icon). It will ask for the file name (filename.c format). Type C
source filename and save it. The saved file contains following C
code.

/*
 * CIN source file
 */

#include "extcode.h"

CIN MgErr CINRun(float64 *Input_1, int16 *Input_2, uInt16
*Input_3);

CIN MgErr CINRun(float64 *Input_1, int16 *Input_2, uInt16
*Input_3)
{

/* ENTER YOUR CODE HERE */
return noErr;

}

It should be noted that the labels (i.e. Input 1, Output 1, etc.) and its
data format (i.e. double, integer 16, etc.) on the controls and indica-
tors become the variable names and data format of the C code. In
addition, #include “extcode.h” should be the first header file. Addi-
tional header files such as “math.h” and “stdio.h” should follow
“extcode.h” header.

7. Insert C code that you wrote into the LabVIEW generated C code
(where it says /* ENTER YOUR CODE HERE */). Make sure the
variable names and types match with the declared variables. For
example, for the present case:

C code for the stepper motor control

/*
 * CIN source file
 */

#include "extcode.h"
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>

CIN MgErr CINRun(int16 *var1);

CIN MgErr CINRun(int16 *var1)
{

{
_outp(0x378, *var1);
_outp(0x378, 0);
}
return noErr;

}

8. Create a 'make' file using text editor (notepad, word, word pad, etc.)
and save it with the same file name as C source code (with .mak
extension). The make file should contain following 4 lines.

Name = name of C file without extension
Type = CIN
CINTOOLSDIR = path to cintools directory
!include<$(CINTOOLSDIR)\ntlvsb.mak>

For example, for the present case:

Make File for the stepper motor control

name = step
type = CIN
cintoolsdir = c:\labview\cintools
!include <$(cintoolsdir)\ntlvsb.mak>

IEEE Canadian Review - Autumn / Automne 1999 13

The path to the cintools directory can be found (for the Windows 95
system) in “C:\ProgramFiles\National Instruments\LabVIEW\Cin-
tools”.

9. Prior to compiling the source code, make sure that the C source
code and the make file are in the same directory (or the compiler
will not create .lsb extension file, it will create .exe file instead).

10. Open the make file in Microsoft Visual C++. When the file is
opened, the program displays two warning dialog boxes. First, it
says, “This makefile was not generated by Developer Studio”.
Answer “Yes” to “Do you want to continue?”. Then in the second
dialog box shows the type of platform you wish to operate on
(default is Win32). Make sure the Win32 is checked and click
“OK”.

11. Select “Build filename.exe file” from the build pull-down menu in
Microsoft Visual C++. The program follows the instruction in the
make file and creates filename.lsb instead of filename.exe.

If .lsb extension file is created correctly, the status window displays
the following status report.

------------ Configuration: Filename - Win 32 Debug ------------
Microsoft (R) Program Maintenance Utility version 1.62.7022
Copyright (C) Microsoft Corp 1988-1997. All rights reserved.
filename.c
Microsoft (R) 32-Bit Incremental Linker Version 5.00.7022
Copyright (C) Microsoft Corp 1992-1997. All rights reserved.
LabVIEW resource file, type 'CIN', name 'filename.lsb', created
properly.

Filename.exe - 0 error(s), 0 warning(s)

Where filename is the name of the C source code or the make file
that you compiling. The .lsb extension file should be in the direc-
tory where the C source code and make files are in.

12. From the LabVIEW vi diagram, (Step 3), right-click on the CIN
icon and choose 'Load Code Resources'. The dialog box indicates
the path to the .lsb extension files that you want to load. Select the
file and click 'Open'.

13. The source code is now loaded onto the CIN icon and ready to per-
form the task. Once the code is loaded, it will become a stand-
alone, executable icon (does not require c source code or make file).
When this vi is saved (including CIN icon), it can be called from
other VI's.

A LabVIEW sub VI, called Motor Control.vi, is developed to control
the stepper motor through a parallel port. The Front Panel diagram and
the Block Diagram for which are shown below in Figure 8.

Figure 8: Front Panel and Block Diagram of the LABVIEW sub-VI
For the parallel Port Stepper Motor Control

4.0 Motion Control Using SCXI System
National Instrument Signal Conditioning Extension for Instrumentation
(SCXI) system with LabVIEW 5.0 was used to develop the program for
running a wind tunnel experiment involving a stepper motor. The sys-
tem consists of SCXI-1000 chassis which has 4 slots for data
acquisition, multiplexing, and control modules. Two modules are
installed in the present system: SCXI-1200 and SCXI-1121. The SCXI-
1200 is the general-purpose data acquisition board (A/D card). It has 4
differential channels (or 8 single-end channels) and three 8-bit digital I/
O ports. The SCXI-1121 (with SCXI-1321 accessory) has 4 optically
isolated channels (differential) and excitations. The basic setup of the
SCXI system is the same as the parallel motion control setup. Since the
SCXI system uses parallel port to communicate with a computer, SCXI-
1200's digital I/O port was used to control the stepper motor.

4.1 Stepper Motor Connection (SCXI-1200)

SCXI-1200's digital I/O port (PA-0, PA-7, and digital ground) controls
the stepper motor (via translator circuit) as shown in Figure 9. The
detailed descriptions of the ports are provided in the SCXI-1200 man-
ual [3]. The digital pulse combination (described above) and frequency
of PA-0 and PA-7 control the direction and the speed of the motor.

The pin connections between the SCXI-1200 unit (50-pin) and the trans-
lation module terminal are described in the Table 4. For the connection
from the translation modules to the stepper motor, refer to the translator
circuit diagram (Figure 2).

A LabVIEW sub VI, called DIO Motor Control (one step).vi, is devel-
oped to control the stepper motor. The Front Panel diagram and the
Block Diagram of which are shown below in Figure 10.

Table 4: Connector Pin-outs (SCXI-1200)

SCXI 1200 Pin Number (50 pin) Translation Circuit
Terminal Number

13 (Digital Ground) 3 (Ground)

14 (PA-0) 11 (Step Signal)

21 (PA-7) 12 (Direction Signal)

Computer
(LabVIEW 5.0)

DIO Motor Control.vi

NI-DAQ Software

SCXI 1200 Translation Module Stepper Motor

DIO Port
PA-0
PA-7

DGND

Parallel Port

Figure 9: Schematic of Stepper Motor Control Setup Using SCXI-1200

14 IEEE Canadian Review - Autumn / Automne 1999

5.0 Summary
The methods to control a stepper motor using a parallel port and
National Instrument's SCXI unit are described. The use of the transla-
tion module, described in this paper, enables control of a stepper motor
using conventional programming languages or data acquisition soft-
ware. It is an inexpensive way of developing a prototype data
acquisition/control system. In addition, data acquisition software, which
has a capability of compiling conventional programming codes (such as
LabVIEW Code Interface Node (CIN), allows the motion control rou-
tine to be embedded as a part of the acquisition function. The procedure
is explained in detail here for the driver routine written in C++. The
procedure can be applied to any motion control such as, probe travers-
ing, model rotation etc.

DIO Motor Control (one step).vi
Front Panel

Connector Panel

Block Diagram

Figure 10: Front Panel and Block Diagram of the LABVIEW sub-VI For the SCXI Stepper Motor Control

About the Authors
Nagahiko Shinjo is
a graduate research
student pursuing
Ph.D. degree in
Ocean Engineering
at Florida Institute
Technology. He
obtained his M.S.
also in Ocean Engineering from the same
University. His general areas of research
include bio-fouling control, autonomous
underwater vehicle control system, and
underwater instrumentation. Currently he
is developing a memory alloy based bal-
last system for autonomous underwater
vehicles and biologically based underwa-
ter vehicles.

E-mail: shinjon@winnie.fit.edu

Chelakara S. Subramanian is an
associate professor of Aerospace
Engineering at Florida Institute of
Technology. He obtained his Ph.D.
in Mechanical Engineering from
University of Newcastle, Australia
and M.E. in Aerospace Engineer-
ing from the Indian Institute of
Science, India. His research expertise is in experimental
fluid mechanics and new instrumentation. Currently, he
is involved in research projects on pressure sensitive/
temperature sensitive paint system, particle imaging
velocimetry, low-cost diode powered 2-component laser
doppler velocimetry, hurricane flow field measurements
and wind engineering studies. He is an associate fellow
of AIAA, member of ASME, member of Society of
Engineers, U.K., licensed Professional Engineer in U.K.
and a member of International Society of Professional
Engineers in France. E-mail: subraman@winnie.fit.edu

Larry Buist, a
13 year veteran
of Florida
Tech, has
extensive pro-
totyping
experience with
Harris GISD
(Intersil), MicroPac Industries, and a
variety of electronics start-up compa-
nies in Nevada, Texas and Florida.
He holds a patent in the video game
industry and is involved in the design
and construction of electronic and
electro-mechanical circuits on a vari-
ety of research projects at Florida
Tech.

E-mail: lbuist@fit.edu

6.0 Acknowledgments
The authors are very grateful to Mr. Dan Simpson for his assistance in
the lab.

7.0 References
[1]. Hall, Douglas V., “Microprocessors and Interfacing: Programming

and Hardware”, McGraw-Hill, 2nd Ed., 1991.

[2]. National Instruments, “LabView Code Interface Reference Man-
ual”, National Instruments, Jan. 1998 Ed., Part No. 320539D-01.

[3]. National Instruments, “LabView User Manual”, National Instru-
ments, January 1998 Edition, Part Number 320999D-01.

[4]. National Instruments, “G Programming Reference Manual”,
National Instruments, Jan. 1998 Ed., Part Number 321296B-01.

