
IEEE Canadian Review - Fall / Automne 2003 25

Dans cet article, nous introduisons l’utilisabilité comme un des
critères importants de qualité d'un logiciel. Nous donnons aussi un
apercu sur les conséquences néfastes de sa non prise en compte
dans le cycle de developpement logiciel. Nous expliquerons pour-
quoi, actuellement, l’utilisabilité est négligée pendant le
développement des logiciels. En particulier, contrairement à
l’opinion répandue, nous démontrerons que l’interface utilisateur
et le système logiciel sous-jacent sont des composants indissocia-
bles. En conclusion, nous exposerons les méthodes pour intégrer la
conception centrée-utilisateur et l’utilisabilité dans le cycle de vie
du logiciel.

In this paper, we introduce usability as a quality attribute of a soft-
ware system, and describe the disastrous results of ignoring it. We
will explain why usability has been neglected in current software
system development approaches. In particular, we discuss the fun-
damental, fallacious belief that the user interface and the software
system are independent concepts. Finally, we will reflect on meth-
ods for completely incorporating user-centered design into the
system engineering lifecycle.

Sommaire

Abstract

A

1.0 Introduction
s a software system user/consumer, you may have experi-
enced something like this: With the hope of becoming more
productive, you buy and install a sophisticated piece of soft-
ware on your desktop computer, PDA or mobile phone.
Instead, you end up using only about 20% of its features,

either because you are not aware of all the things it can do, or because
you don't have time to learn them. This scenario illustrates some of the
damage of unusable software.

A lack of usability can increase the time and cost of learning as well as
technical support. It can decrease productivity and sales while increas-
ing the cost of maintenance. A strong commitment to usability offers
enormous benefits. Among the measurable benefits of usable systems,
one can mention decreases in terms of costs and learning time, easier
transition to new versions of a system, human performance, productiv-
ity enhancements, better quality of work, and fewer user errors in data
entry [3].

Furthermore, several studies have shown that 80% of total maintenance
costs are related to problems users have with what the system does and
not with technical bugs [1]. Of the problems, 64% are with usability [3].
In a recent survey of 8 000 projects, the Standish Group found that lack
of user involvement and incomplete user requirements represent the
major reasons for project success or failure [6]. One of this situation’s
causes is that software engineering methodologies, when used for
developing highly interactive software with a significant user interface,
have a major limitation. Most of them do not propose any mechanisms
for:

• Explicitly and empirically identifying and specifying user needs
and usability requirements,

• Testing and validating requirements and user interface prototypes
with end-users before and during development.

These are among the reasons why usability is becoming an increasingly
critical software development issue. Usability assurance and user accep-
tance are about to become the ultimate measure for the quality of
today's e-commerce web sites, mobile services and tomorrow's proac-
tive assistance applications.

2.0 Usability: The Well-known Yet Oft-neglected
Quality Factor
For an interactive software product, usability refers to its ease of use,
and its ease of learning. Many definitions of usability exist, which
sometimes makes usability a confusing concept. ISO alone proposes
two different definitions for usability:

• ISO/DIS 9241-11 advocates that usability is a high-level quality
objective, and that it is defined as: “The extent to which a product
can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of
use”.

• In ISO 9126 usability is seen as one relatively independent contri-
bution to software quality. Usability is defined as: “A set of
attributes of an interactive system that bear on the effort needed for
use and on the individual assessment of such use by a stated or
implied set of users”.

Besides the conflicting definitions of usability within the software engi-
neering and human computer interaction (HCI) communities, there are
few integrated software quality models for objectively specifying and
measuring our current meaning of usability. One of the ISO standards’
weaknesses are that they are not well integrated into our day-to-day
software quality assurance procedures and practices.

For example, some software managers will likely feel that their project
can’t afford so much time spent on usability requirements and user
interface design. They will worry that the iterations of prototypes will
never end, with “those HCI people” trying to make everything perfect.

by: Ahmed Seffah and Jonathan Benn,

Concordia University, Montreal, QC

Making Usability a Respectable Quality Attribute in the Engineering Lifecycle
Engineering Lifecycle

Computers / Ordinateurs

There are two solutions to this.

First, setting down measurable usability objectives, as part of the project
plan, will decrease the project workload, not increase it. It is much eas-
ier to build close to the mark right from the beginning (thanks to
effective user feedback throughout the process) and then tweak the
project until it’s correct, than it is to miss the mark by a mile and then
try to push the project back on track at the end of the development
cycle. If this seems obvious, ask yourself why so many developers wait
until their project is nearly complete before they seek user feedback for
the first time.

Secondly, overloaded managers should consider the long-term effect of
quality work on the self-esteem (and hence productivity) of their devel-
opers. DeMarco and Lister [2] have a hypothetical manager saying,
“Some of my folks would tinker forever with a task, all in the name of
‘Quality’. But the market doesn't give a damn about that much quality -
it’s screaming for the product to be delivered yesterday...” DeMarco and
Lister agree: “People may talk in glowing terms about quality or com-
plain bitterly about its absence, but when it comes time to pay the price
for quality, their true values become apparent.” And continue on to say
that “the client’s perceived needs for quality in the product are often not
as great as those of the builder,” but that letting the builders of a prod-
uct (the software developers) apply their own judgment as to when the
software is ready for release will result in higher productivity in the
long run.

3.0 The Fallacy Of A Cartesian Separation Between
The User Interface And The System's Functionality
There is a common (false) conception that a software system’s function-
ality exists independently of the user interface - in fact, there is no need
for functionality except for what is needed by the user. If the user inter-

26 IEEE Canadian Review - Fall / Automne 2003

Traditional practices in software
development

Technology/developer-driven

System component focus

Individual contribution

Focus on internal architecture characteristics

Quality measured by product defects and per-
formance (system quality)

Implementation prior to human validation

Establishing the functional requirements
(features, system resources)

face doesn't provide access to a certain piece of internal functionality,
that functionality is dead code that might as well not exist. The link
exists along the reverse direction as well: a system with poor functional-
ity will have a poor user interface.

The term user interface is perhaps one of the underlying obstacles in our
quest for usable programs since it gives the impression of a thin layer
sitting on top of the other software that is the “real” system. This dichot-
omy between the perceived situation and the real situation is explained
by the peanut butter theory of usability. This is the specimen of soft-
ware in which usability is seen as a spread that can be smeared over any
software model, however dreadful, with good results if the spread is
thick enough. If the underlying functionality is confusing then spread a
graphical user interface on it… If the user interface still has some prob-
lems, smear some manuals over it. If the manuals are still deficient,
smear on some training which you force users to take.

This fallacy dichotomy does not take into account the intimate relation-
ship that exists between internal attributes and external factors that
affect the usability of a system. As an example, the user and developer
are both interested in the software’s performance, but the user could see
this attribute as response time to the event entered by him, while the
developer thinks of it as data structure depth or path length. Further-
more, a requirement for quality in use may be that the system will
increase the user's performance by 20% when doing routine tasks. If a
search engine function is to give a fast response time, the information
may need to be indexed in a certain way to support fast retrieval. Only
by ensuring that goals at the internal functionality level mirror goals at
the user level can this 20% performance increase be achieved.

4.0 Involving The User In The Software Develop-
ment Lifecycle Is A Beginning
Most usability professionals agree on the basic approach to user-cen-
tered design. Key steps include requirements gathered through
observation and interview, creating a conceptual design, iterative devel-
opment, testing and refinement. While specific situations may call for
different techniques and different levels of formality, the basic struc-
ture is generally similar. This commonality is the basis for the emerging
ISO Standard 13407: Human-Centered Design Process for Interactive
Systems. However, although some software engineering standards
claim to have similar goals to those promoted in ISO standard 13407, in
practice they often seem very different. This is because they are formu-
lated using different terminology, notations and languages. An example
of this would be the IEEE standards on software quality and the ISO
collection on quality in use (see the IEEE-1061 Standard on Software
Quality Metric Methodology and the ISO-9126 Standard on Quality
Characteristics and Guidelines for their Use).

Too often, user-centered design remains the province of visionaries and
a few enlightened software practitioners and organizations such as IBM,
Microsoft and SUN, rather than the everyday practice of programmers
and analysts. One barrier to the wider practice of user-centered design is
that its structure and techniques are still relatively unknown, underused,
difficult to master, and essentially inaccessible to small and medium-
sized software development teams and common developers. While soft-
ware developers may have high-level familiarity with such basic
concepts as requirements analysis and usability testing, few understand
the complete process at a level that allows them to incorporate it into the
larger software development lifecycle.

5.0 Moving From Technology-driven To Human-
centered Engineering Practices
User-centered design is a philosophy opposed to the system-driven
development philosophy that is the traditional way of seeing and doing
things in software development. This philosophy consists of involving
the software's end-users in all of its development stages [5]. User-cen-
tered, or human-centered, design is the direction in which we want
software development to evolve, but it has yet to become established
practice. Hopefully, it will become the recognized, accepted way of
doing things. However, dislodging the system-oriented approach will
take an enormous amount of effort or a miracle. This miracle may be on
its way thanks to new technologies and decentralized software
development.

It is important to use the term user-centered design unequivocally. It is a
bit unfortunate that for the software engineering community, usability
engineering has become the way of thinking about user-centered design.
Usability engineering focuses on requirements and evaluations, thus pre-
serving a technical, engineering-oriented attitude to software
development. User-centered design, on the other hand, addresses design-
ing with the users. Figure 1 clarifies the differences between human-
centered and technology-driven development. It also illustrates some
avenues for bridging the gap between software engineering and UCD
practices.

6.0 Establishing Usability In The Software System
Engineering Lifecycle
Engineering a product for usability requires attention to the user inter-
face but also to all the other elements that might affect usability
including: user manuals, training materials, help system, technical sup-
port as well as installation and configuration procedures. It takes a shift
from the waterfall development model to an interactive process that
comprises the following milestones:

Figure 1. Software engineering Versus user-centered design [Source IBM easy to use Website www.ibm.com/easy]

Best-practices in human-centered

User-driven

User solution focus

Multidisciplinary teamwork including users, cus-
tomers, human factor experts

Focus on external attributes
(look and feel, interaction)

Quality defined by user satisfaction, performance
(quality in use)

Implementation based on user-validated feedback

Understanding the context of use
(user, task, work environment)

Versus

T
he P

ractice B
ridge

development

IEEE Canadian Review - Fall / Automne 2003 27

• Analyzing and specifying user needs and requirements. Besides
giving details on the functional requirements, these also consist of
collecting information about user personas and their tasks, as well
as the technical and organizational environment in which the sys-
tem will be used.

• Using digital images, sound, video and animations to develop
proofs of concept, design solutions and prototypes. Prototypes may
range from simple paper mock-ups of screen layouts to prototypes
with greater fidelity, which run on computers.

• Planning and conducting usability evaluation and user-oriented
tests for collecting user feedback and understanding user behaviors.
Here we can use an audio and video monitoring system for con-
ducting ethnographic interviews and online customer satisfaction
surveys. We can also conduct performance measurements, where
the users attempt to accomplish “real world” tasks, using a proto-
type or the final system. The quantitative feedback from these
empirical studies are then transformed into insights and patterns
that can be used to develop the improve the original design.

Figure 2 describes the main activities suggested by the ISO 13407 stan-
dard on human-centered processes for interactive systems. Constantine
(1999) and Mayhew [4] both proposed a detailed development lifecycle
including these activities.

The only presently feasible approach to successful design is an empiri-
cal one, requiring observation and measurement of user behavior,
careful evaluation of feedback, insightful solutions of existing prob-
lems, and strong motivation to make design changes. User-derived
feedback about ease of use and ease of learning is collected directly
and/or indirectly from users, and then transformed into design recom-
mendations, decisions, principles, guidelines, design patterns and look
and feel guidelines that can be used as proven design solutions to com-
mon user problems, or as best design practices.

7.0 Usability Versus The Other Quality Attributes
And Safety In Particular
As we have already mentioned, usability is intimately coupled with
other software quality attributes, including safety and security. The
Therac-25 device is a perfect historical example of this intimate
relationship.

This appliance was a cancer irradiation device whose faulty operation
led to a number of deaths. Eleven Therac-25s were installed in the US
and Canada. Six accidents involving massive overdoses to patients
occurred between 1985 and 1987. It may seem intuitive that a device
that is easy to use and learn is safer than one that isn’t, but this is not
always the case. One of the safety features in the original Therac-25
design was that all the settings for the device had to be entered through
a terminal, as well as on a control panel. Users as well as developers

saw this as redundant, and the original design was changed before
release so that the settings could be entered on the terminal alone. Using
the new user-friendly GUI, once the settings were accepted by hitting
the return key, the user was asked to confirm that the settings were cor-
rect - by hitting the return key again. This extra step was considered a
replacement for the control panel, and in the opinion of the developers
it would increase the system's ease of use while reducing its complexity.

Unfortunately, users started pressing the return key twice in succession,
as a reflex. With repetition, the action became like double-clicking a
mouse and the machine's settings were never really reviewed. Because
of a fault in the Therac-25’s software, some data entries weren't prop-
erly recorded. The fault was a race condition created because proper
resource locking of the data wasn’t exercised. Since the crosscheck in
the user interface had been removed, the fault was never detected in
time to save lives. Here was an example of a software system where the
design was altered to favor usability, but the safety of the device was
fatally compromised.

The story of the Therac-25 holds many powerful lessons, including:

• Designing the correct user interface for a system is, contrary to
popular opinion, very difficult. It requires research, user validation
and the careful balancing of many trade-offs. The Therac-25’s
human-computer interface required more thorough thought than it
received.

• The inseparability of the system and the user interface. A hastily
improved user interface could not cover up fatal flaws inside the
software system.

• Better usability did not automatically equate to better safety. In
fact, in this case ease-of-use and safety were trade-offs of each
other. Better user validation would have revealed the error in allow-
ing return key double-clicks.

• Usability is one quality factor among many. In this case, safety was
of critical importance, and more essential than ease-of-use.

The most important lesson we can pull from the tragedy of the Therac-
25 is this: the deaths due to the irradiation appliance could have been
prevented (in spite of the internal system flaws) had there been a greater
emphasis on user validation and feedback. Had the potential users (doc-
tors and nurses) been consulted throughout the development process,
the system engineers would surely have had an easier time concluding
that either (1) The system was better off retaining the control panel in
favor of safety, or (2) A confirmation mechanism other than a second
return key press was required in order to ensure that the data entries
were reviewed. However, because user validation and feedback was left
to the end of the process, these important conclusions were never
reached.

Figure 2. ISO/IEEE 13 407 Standard

Evaluate design against
requirements

Identify need for
human-centered design

System meets specified
organizational, user and
functional requirements?

Understand and specify
the context of use

Produce design
 solutions

Specify the user and
organisational requirements

28 IEEE Canadian Review - Fall / Automne 2003

8.0 Concluding Remarks
A successful usability development approach can entail setting up envi-
ronments and methods to monitor users doing things to better
understand how to help them work well; it can include developing
methods to normalize user input without bias; and perhaps most impor-
tantly, it can facilitate the creation of interfaces that make good use of
the gathered information. In any case, it is also pertinent that users be
involved in every step to ensure that it’s their input that is being
reflected, and not the opinions of those applying the usability
engineering.

It is now acknowledged that software engineering as an engineering dis-
cipline involves the development of software through accepted practices
to facilitate economic success. It is important that it be recognized early
on that usability engineering is a key component to meeting the above
description. Hopefully, much emphasis will be placed on this aspect of
software engineering in the near future, and more importantly, corre-
sponding pressure will be applied to create the appropriate courses at
the graduate and undergraduate levels in order to supply the market
with appropriately equipped software engineers.

9.0 References
[1]. Boehm, B.W. Software Engineering Economics, Englewood

Cliffs, New Jersey: Prentice Hall, 1981.

[2]. DeMarco T. and Lister T. Peopleware: productive projects and
teams. Dorset House, New York, 1987.

[3]. Landauer, T.K. “The Trouble with Computers: Usefulness, Usabil-
ity and Productivity”. MIT Press, 1995.

[4]. Mayhew, D.J.; The Usability Engineering Lifecycle: A Practitio-
ner's Handbook for User Interface Design, Morgan Kaufman
Publishers, 1999.

[5]. Norman D.A. and Draper S.W. (eds), User-Centered System
Design, Laurence Erlbaum, Hillsdale NJ, 1986.

[6]. Standish Group. “CHAOS Chronicles or CHAOS: A Recipe For
Success”. 1995.

About the authors

Since January 2000, Ahmed Seffah has been an
assistant professor of HCI and software engi-
neering in the department of Computer Science
at Concordia University. He is the Concordia
research chair on Human-Centered Software
Engineering and the co-founder of the Usability
and Empirical Studies Laboratory. He holds a
Ph.D. in software engineering from the École
Centrale de Lyon (France). After completing his
postdoctoral in 1994, he joined in 1995 the
Computer Research Institute of Montreal
(CRIM) as a member of the research staff. His research interests
include usability requirements and testing, human-centered devel-
opment, user interfaces engineering, quality in use measurement
and metrics, and empirical software engineering. Dr. Seffah is the
vice-chair of the IFIP working group on human-centered design
methodologies.

Jonathan Benn is finishing his bachelor’s
degree in software engineering at Concordia
University, in Montréal, Québec. Jonathan is
also looking forward to obtaining a master’s
degree in human-centered software engineer-
ing. He is currently the technical manager of the
Concordia Usability and Empirical Studies Lab.
In the past, he has enjoyed tutoring fellow stu-
dents on the finer points of C++ and PC
assembly language programming. Jonathan’s
interests include improving the usability and
safety of embedded systems, improving web usability, website
design, software architecture, and C++ programming.

Stephen McGilvray received his B.Eng degree
in Electrical Engineering from Lakehead Uni-
versity in 2002. He was awarded the IEEE Life
Member Award in 2003 for his student paper on
control of a self-erecting inverted pendulum. He
is currently working towards his M.Sc.Eng. in
Control Engineering at Lakehead University in
Thunder Bay. His main areas of research
include nonlinear control of a VTOL four-rotor
helicopter and force control of robot
manipulators.

About the author

the motor voltage after this disturbance do not peak much over 4 V at
times. The response of the motor is the important factor for this plot
seen. The motor does not begin to generate much driving force until it
nears the ±4 V range.

8.0 Conclusion
The self-erecting inverted pendulum
has been manufactured for a small cost
and experiments have shown promis-
ing results. This system can be used as
an educational tool for helping under-
stand model dynamics and controller
response.

Suggested improvements for this sys-
tem would include a motor with an
improved response. This would
increase the robustness of the system
and enhance disturbance recovery and
swing up.

After many experimental tests the
repeatability of the swing up controller
is less than ideal. Since this controller
is open loop, any disturbances such as
slight bends in the electrical harness
attached to the cart create friction caus-
ing the system to respond differently
each time. Improvements could be
implemented by designing a closed loop controller for the swing up.

9.0 Acknowledgments
The author would like to thank the following individuals: Student
project members Brett Blyth and Christiaan Woodfield; project supervi-
sor Dr. A. Tayebi; machinist and mechanical specialist Kailash Bhatia;
PCB manufacturing and component locating support from Warren Paju
and Manfred Klein; computer and programming support from Bruce
Misner; swing up modelization theory support from Dr. K. Liu; and
mechanical measurement support from Ed Drotar.

10.0 References
[1]. G. Perry, “Teach Yourself Visual Basic 6 In 21 Days”, Sams Pub-

lishing, Indiana, 1998.

[2]. K. Ogata, “Modern Control Engineering: Third Edition”, Prentice
Hall, New Jersey, 1997, 3rd ed., pp. 952-957.

[3]. D. Galick, and D. Schelle, “Inverted Pendulum Degree Project”,
Lakehead University, 2001.

[4]. “Model-based Design of Control Systems” [Online Article], [cited
November 2003], Available http://www.mathworks.com/products/
controldesign/

Image of the pendulum

Self-Erecting Inverted Pendulum, continued from page 19Usability..., continued from previous page

