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Le but de la technologie “interaction homme-machine” (HM) est
de créer des machines artificielles intelligentes capables d'interagir
avec les êtres humains par l'intermédiaire de leurs voix. Les pro-
grès rapides dans les différents domaines tels que les calculs
numériques, le traitement des signaux et l'évolution des méthodes
statistiques au cours des dix dernières années ont contribué
énormément au progrès et à la croissance énorme de la recherche
sur la technologie HM. Cependant, la création de telles machines
demeure encore un but éloigné. Ceci est principalement dû au
manque d'une compréhension fondamentale du traitement de la
parole par l'être humain. Dans cet article, nous donnons un aperçu
globale de la technologie HM tout en mettant l'accent sur la recon-
naissance automatique de la parole. Finalement, nous concluons
avec quelques perspectives au sujet des limitations fondamentales
de la technologie courante, et les axes de recherche les plus prom-
etteurs pour améliorer cette technologie.

The goal of Human-Machine (HM) technology is to create artifi-
cial intelligent machines that can interact with humans via voice.
Explosive advances in the different fields of digital computing, sig-
nal processing and the evolution of statistical methods in the last
ten years helped the huge progress and growth of HM research.
However, the creation of such machines remains a distant goal.
This is mainly due to the lack of a fundamental understanding of
human speech processing. In this paper, we give an overview of
human-machine technology with emphasis on Automatic Speech
Recognition (ASR). Finally, we conclude with some perspectives
about fundamental limitations in the current technology and some
speculation about where we can go from here.
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1.0 Introduction 
he aim of human-machine technology is to create intelligent
machines capable of decoding spoken information and act-
ing appropriately upon that information, and then speaking to
complete the information exchange [1]. However, the cre-
ation of such intelligent machines still remains a distant goal.

Two challenging areas of speech research are still far from being mature
enough to create such machines: automatic speech recognition (ASR)
[2] and speech synthesis. For example, most existing ASR systems used
for practical applications are of the small-vocabulary or isolated-word
type. Medium- and large-vocabulary systems perform well in laborato-
ries but not in real life [3] i.e. the field of ASR is in its early infancy. As
well, synthesized speech is still far from natural speech [1]. The objec-
tive of this paper is to provide an overview of human-machine
technology with emphasis on ASR.

2.0 ASR and its Difficulties
ASR can be described as the decoding of speech information using a
machine (Figure 1). This decoded information can then be used to per-
form various tasks such as producing written text, controlling a machine
or accessing a database, telephone voice dialing, and hands-free applica-
tions such as car phones. Huge progress in ASR research has occurred
during the past four decades. However, the desired goal of a machine
that can understand a spoken utterance on any subject by all speakers in
different environments is still far from being achieved because of the
associated difficulties. These difficulties include: inter- and intra-vari-
ability of speakers, the nature of the utterance (continuous speech versus
isolated words), the vocabulary size, the complexity of the language and
the robustness of such recognizers against different environmental con-
ditions under which the recognition operation is performed. Although
many of these problems have already been partially solved, there are
still significant obstacles to be overcome before large-vocabulary con-
tinuous speech recognition systems can reach their full potential. In this
section, we overview briefly the difficulties of ASR processes.

2.1 Adverse Conditions

A robust ASR system can deal with a broad range of applications and
adapt to unknown conditions [6]. In general, the performance of exist-
ing speech recognition systems, whose designs are predicated on
relatively noise-free conditions, degrades rapidly in the presence of
adverse conditions. It was found that recognition accuracy for a typical
speech recognizer drops from 96% for clean speech to 73% as the sig-
nal-to-noise ratio (SNR) is decreased to 20 dB, and it drops to 31% at 10
dB SNR. However, a recognizer can provide good performance even in
very noisy background conditions if the exact testing condition is used
to provide the training material from which the reference patterns of the
vocabulary are obtained, which is practically not always the case.

In order to cope with the mismatched (adverse) conditions, different
approaches could be used. Two fundamentally different approaches have
been studied for achieving noise robustness. The first approach pre-pro-
cesses the corrupted speech input signal prior to the pattern matching in
an attempt to enhance the SNR. The second approach modifies the pat-
tern matching itself in order to account for the effects of noise. Methods
in this approach include noise masking, the use of robust distance mea-
sures, and HMM decomposition.

In addition to the above techniques, in certain applications, where train-

ing and testing can be done under the same noisy conditions, acceptable
recognition performance can be obtained. It has been shown that this
multi-style training improves the performance substantially under stress
and with different speaking styles, under normal conditions by compen-
sating for day-to-day speech variability. It can also be used when a
recognizer cannot be trained under live stress conditions. Multistyle
training reduces the error rate by more than a factor of two from 20.7%
to 9.8%. The drop in the error rate is large, 6.2% to 2.9%, even for nor-
mally spoken words, and greatest for Lombard and angry conditions.

2.2 Inter- and Intra-speaker Variabilities

The inter- and intra-speaker variabilities in speech sounds include dif-
ferent speaking styles, speaking modes, diverse accents, poorly
articulated speech, speaker stress, and disfluencies. Speaker noise
includes the Lombard effect, uncooperative speakers, lip smacks, breath
noises, pops, clicks, coughs, laughter, and sneezes. These variabilities
result in two main categories of speech: read and spontaneous. These
two types of speech differ not only in the way they are produced, but
also in the way they are perceived. This was proven in different studies
by showing that listeners can differentiate between the two speech
types, even when lexical, syntactic, and semantic structure are identi-
cal. Although the perceptual distinction of the two types of speech is
quite evident, it is not clear which perceptual cues enable such a dis-
tinction. However, in both cases, speakers include certain information
in speech that enables listeners to recover words, and listeners apply
what they know about the spoken language in order to understand such
spoken speech. Several cues for word perception are used to recognize
words. These cues include: the word itself, syntax and semantics, in
addition to prosodic features.

T

Figure 1: Block diagram of a typical continuos speech recognition 
system.
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2.3 Other Difficulties

In general, read speech is characterized by its monotony, fluency and
correct syntax; however, spontaneous speech produces a rhythmic sen-
sation and could be disfluent. Such disfluencies include: more
hesitations and pauses, repetitions and repairs, false starts, pauses
(either filled (vocalized), e.g. “uh”, “um”, etc., or lexicalized, e.g.
“well”, “like”, and “you know”, or unfilled (silent)), laughter and
coughs, longer and nonuniform-distributed unfilled pauses. Beside dis-
fluency, spontaneous speech is characterized by: pronunciation
variation due to accents, coarticulation and speaking mode, phoneme
deletion or phonemes shortened, less vowel reduction, sentence stress of
some important words in terms of: pitch movement, variation of spec-
tral characteristics (intensity), lengthening [10].

All of the above-mentioned disfluencies and the associated problems of
spontaneous speech render the ASR process much more difficult and
reduce the performance of recognizers.

3.0 Different Approaches for ASR
In general, there are two approaches to speech recognition, namely the
acoustic-phonetic approach, and the pattern recognition-based approach.
In the first approach, continuous speech can be segmented into well-
defined regions which can then be given one of several phonetic labels
based on measured properties of the speech features during the seg-
mented region. Thus, characterization of the features of basic speech
units can be found and speech can be labeled as a continuous stream of
such phonetic units. Then, a mapping of the sequences of phonemic
units into sequences of words is produced by the lexical decoding.

On the other hand, in the pattern recognition-based approach, the basic
speech units are modeled acoustically based on a lexical description of
words in the vocabulary. The acoustic-phonetic mapping is entirely
learned via a finite training of a set of utterances. The resulting speech
units are essentially acoustic descriptions of linguistically based units as
represented in the words occurring in the training set. The pattern recog-
nition-based phonemic approach has been found to have the highest
recognition performance so far.

4.0 Main Components of an ASR System
Almost all speech recognition systems use a parametric representation
to represent the waveform of a speech utterance. The aim of such a
parameterization is: (1) to preserve the main features of speech that can
easily identify a sound; (2) to eliminate as much as possible effects pro-
duced by communication channels, speaker differences and
paralinguistic factors; and (3) to lower the information rate as much as
possible for further easier processing, analysis and computation/mem-
ory reduction. A wide range of possibilities exists for parametrically
representing the speech signal such as: the short-time spectral enve-
lope, Linear Predictive coefficients (LPC), Mel-Frequency Cepstral
Coefficients (MFCCs), the short-time energy, zero crossing rates and
other related parameters (Figure 2).

To better represent temporal
variations in the speech sig-
nal, higher-order time
derivatives (or simply, delta
parameters for first deriva-
tives, delta-delta parameters
for second derivatives) of sig-
nal measurements are added to
the set of static parameters
(e.g. MFCCs, LPC, etc.). The
combination of dynamic and
static features had proved
additional discriminability for
speech pattern comparison [2]
and consequently improved
the accuracy of the speech rec-
ognition process. Moreover,
temporal variations in the
speech signal, obtained by
applying time derivatives to
the speech signal, when com-
bined with the static features
mentioned above, had shown
additional discriminability for
speech pattern comparison [2].

Once the feature vectors are formed, they are input to the pattern classi-
fication module. This module classifies these vectors into selected
linguistic units (words, phonemes, etc.**). This can be achieved by
Dynamic Time Warping (DTW), Hidden Markov Models (HMMs),
Figure 3 [7], Artificial Neural Networks (ANNs) [8], expert systems [9]
and combinations of such techniques. HMM-based systems are cur-
rently the most commonly used and most successful approach. This is
followed by a word matcher, which takes the phonetic data from the
front end and tries to make words out of them on the basis of stored
phonetic rules, vocabulary, and syntax rules (i.e. linguistic constraints).

Sentences are formed by the concatenation of the words chosen by the
word matcher according to syntax and semantic rules. To accomplish
this task, a language model is used to provide a more accurate mecha-
nism for estimating the probability of some word in an utterance given
the preceding words. For simple tasks, in which it is only required to
recognize a constrained set of phrases, we can use “rule-based” regular
or context-free grammars. However, in large vocabulary tasks, “n-
gram” (e.g. “bigram” and “trigram”) grammars, with given probabili-
ties of occurrence, are most commonly used. The word concatenation is
done with an optional silence between words. These concatenated
words are then matched to entire sentences which are stored in the lexi-
con, and the best matched sentence is selected. The sentence level
matcher uses constraints imposed by a set of syntactic rules and seman-
tic rules to determine the optimal sequence sentence in the language.

Searching for the best word sequence given the acoustic and language
models and a spoken utterance is one of the most computational costs in
a large vocabulary ASR system. Whatever the complexity of the acous-
tic models, the search cost is heavily influenced by the size of the
vocabulary (task). Since the number of possible hypotheses grows expo-
nentially with the length of the word sequence, the simple and obvious
search strategy going through the whole HMM network is not practical
in large-vocabulary ASR systems. In order to limit the exponential
search space, heuristical pruning-away hypotheses with low scores tech-
niques are used. The pruning causes the system to make suboptimal
decisions while maintaining accuracy in the recognition process.

5.0 Statistical ASR Formulation
Statistical methods are the most dominant approach to speech recogni-
tion. Such popularity is due to their simplicity in modeling variations in
speech signals using well-known statistical models such as Gaussian
distributions, and training the systems using standard machine learning
principles. Given an acoustic observation sequence:

the ASR process is performed usually by finding the most likely

sequence of acoustic phonetic units, , which maximizes the a-poste-
riori probability (MAP) as follows:

Since P(O) is independent of W then

o o1 o2 … oT, ,{ , }=

Ŵ

Ŵ maxw P W O( )arg=

Ŵ marg axw P O W( )P W( )[ ]=

** Although the word is the natural unit to represent speech in a given language,
large-vocabulary ASR systems require the modeling of speech in smaller units
than words, i.e., subword units. This is due to the fact that the training of a large
number of words is generally impractical. The subword unit used frequently in
most existing ASR systems is the phone. There are, however, several variations of
subword units. These variations include the context-dependent phone, e.g.,
biphones and triphones

(1)

Figure 3: HMMs for context dependent phonemes

(2)

Figure 2: Front end speech 
parametrisation process.

(3)
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where P(O|W) is the probability of observing O when W is uttered.

If the phonetic unit used is the word, P(W) which is generally called the
language model, it adds both syntactic and semantic constraints of the
language to the recognition task. On the other hand, the MAP decoding
can be accomplished by taking into account all possible sequences q of
O:

6.0 State-of-the-art ASR Researches
The state-of-the-art ASR technology is the one that is based on HMM
technology. That is, most research groups who work in the ASR field
are concentrated in attacking the problems associated with HMM-based
recognizers. These problems include the complexity of both acoustic
and language models, the lexicon size, the searching algorithms and the
robustness of such recognizers in adverse conditions. Some of the solu-
tions to the above-mentioned problems that have been proposed over
recent years include the use of huge amounts of data and the use of bet-
ter smoothing techniques in order to refine the acoustic models.
Complex language models are used instead of simple bigram and tri-
gram ones. In addition, we use big lexicon and fast searching
algorithms. Moreover, we concentrate also on rendering such recogniz-
ers more robust in adverse environments (against additive noise,
convolutional noise (e.g. telephone speech), uncooperative speakers,
rapid speech, spontaneous speech).

7.0 Problems with Existing Approaches to ASR
Almost all existing ASR systems use short-term parameter vectors rep-
resenting about 10-20 ms of speech. The use of such short segments is
inadequate to characterize phonemes in natural speech. In fact, the
speech production phenomena of coarticulation, auditory phenomena of
forward masking and the linguistic concept of a syllable point to tempo-
ral dynamics over an interval of several hundreds of milli-seconds.
Thus, the use of short segments disregards all of these important acous-
tical aspects of speech.

As mentioned above, HMM-based systems are currently the most com-
monly used and most successful approach for ASR. HMMs became
very popular models for ASR because they can deal efficiently with the
temporal aspects of speech. In addition, there are powerful training and
decoding algorithms that permit efficient training. Also, given their
flexible topology, they can be extended to include some phonological or
syntactic rules. To train these models, no explicit segmentation is
needed, but only a lexical transcription, given a dictionary of phonologi-
cal models, is necessary for the training of the HMMs.

However, HMMs do not exploit well many acoustical aspects of speech.
For example, HMMs treat the very-short-term 10-ms frames of speech
as separate information sources, i.e. correlation between successive
acoustic vectors is not modeled well. This problem was solved partially
by complementing the acoustic features that are used for ASR by their
first and second time derivatives and/or using expensive linear discrimi-
native training. Also, the assumption that the state sequences are first-
order Markov chains, the prior choice of the model topology and the
statistical distributions for each state disregard many acoustical aspects
of speech. Besides, practical considerations such as numbers of parame-
ters, the need of thousands of context-dependent phone models to
handle coarticulation and the trainability of HMMs limit their
implementations.

Another problem with existing ASR systems is the use of the MFCCs,
which integrate the short-term spectral envelope of a speech signal over
gradually wider intervals following the Mel scale. However, there is no
theoretical basis that these coefficients are the optimal ones. In addi-
tion, it was found through experiments that these coefficients are highly
sensitive to noise.

In addition to these problems, one fundamental problem for continuous
speech recognition is the limitation of language models. As mentioned
above, in large vocabulary tasks, “n-gram” (e.g. “bigram” and “tri-
gram”) grammars, with given probabilities of occurrence, are most
commonly used. n-grams can be estimated from simple frequency
counts and stored in a look-up table. However, the problem is that the
estimation of such trigrams is very poor due to the fact that many tri-

Ŵ maxarg( ) P W q O,( )
qi q∈
∑=

w,allq

grams do not appear in the training data and many others will appear
once or twice. To solve this problem, several models have been pro-
posed, such as backing-off models, which are used when there are only
one or two occurrences of trigrams in the training data. In such a case,
backing-off is applied to replace the trigram probability by a scaled big-
ram probability. However, such models are very crude.

It must be noted also that all these models ignore hesitations, pauses,
false starts, repetitions, etc. Thus, the problem remains unsolved espe-
cially for spontaneous speech.

Finally, one of the major drawbacks of existing ASR systems is their
robustness against adverse conditions, as mentioned above. Although a
lot of research has been conducted by most of the researchers who work
on ASR to solve such a problem, it is still an open one, especially with
the growing need for applications in wireless environments.

8.0 The Human Way versus the Machine Way
Studies have shown that the performance of existing recognizers are far
short of the performance of humans in recognizing speech. This fact
motivated several researchers to study the basic principles of human
speech recognition (HSR) in an attempt to create artificially intelligent
machines that are capable of mimicking humans in recognizing speech.
In fact, both HSR and ASR have the same goal; i.e. to get the linguistic
message from the signal. However, if we compare HSR manner to most
existing ASR systems we find that human auditory perception works
differently than current ASR systems. ASR machines use spectral
matching techniques, but humans recognize speech with partial recogni-
tion of information across frequency [5]. That is, the linguistic message
is independently decoded in different frequency subbands; the final
decoding decision is based on merging the information from such
bands. It was found that such an approach is effective as long as some
sub-bands contain relatively uncorrupted information. That is, the infor-
mation from the possibly corrupted sub-bands does not have to be used
to decode the message. Thus, a better understanding of the partial recog-
nition of speech processing in humans is required to get robust ASR.
This approach was found effective when used for ASR if some sub-
bands contained relatively uncorrupted information [4].

9.0 Future Research & Perspectives 
Multilingual automatic speech recognition (ASR) in various acoustic
environments is one of the most promising fields of speech communica-
tion research. Enormous progress in ASR research was made in the past
40 years. However, the desired goal of a machine which can understand
a task-independent expression uttered by all speakers using various lan-
guages in different environments is still far from reality. Current
research is now focused upon statistical methods. Improving the perfor-
mance of ASR systems that are used to recognize spontaneous speech in
adverse environments is still an open problem. This demand increases
especially with the increase of the use of these systems in telephone
applications.

Enhancing the performance of such recognizers in adverse environ-
ments can be achieved by using other auditory-based strategies instead
of the Mel approximation in order to get more robust features that can
be used for the recognition of both clean and telephone speech.

The recognition of spontaneous speech can be improved by taking into
consideration the effects of the filled pauses while performing the rec-
ognition process by: (1) either omitting such pauses or by considering
them as words to be added to the dictionary of the ASR system, (2) rec-
ognizing hesitations and restarts, (3) improving the model accuracy at
both the acoustic level and at the language model level and (4) increas-
ing the amount of training data and the lexicon size. This could reduce
the error rate without increasing the search complexity.

Finally, we believe that a better understanding of the properties of
human auditory perception that are relevant for decoding the speech sig-
nal and are likely to improve the performance of ASR in different
environments is necessary for improving the performance of the exist-
ing recognizers. Also, using longer acoustic units (for example,
syllables) instead of using short-term speech segments followed by
post-processing techniques or using dynamic features is promising for
the evolution of ASR. Moreover, rich prosodic cues (e.g., fundamental
frequency (F0), energy, duration, etc.) that permit successful under-
standing, which are ignored by state-of-the-art ASR systems, must be
considered for better performance. Also, the use of language-indepen-
dent acoustic models and variable n-gram language models will enhance
the performance further. Finally, we recommend strongly to benefit

(4)
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from the results of the research of the HSR field by using a hybrid sys-
tem that is not based only on statistical methods but also on speech
communication knowledge. Using such a system could solve almost all
the problems of ASR in the existing systems.
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