
8 IEEE Canadian Review - Spring / Printemps 2003

P
1.0 Introduction

roviding fault tolerance to distributed applications is a chal-
lenging and important goal. Towards this objective, in the
past several years, fault-tolerant architectures, such as SIFT,
FTMP, FTPP, MAFT, ERICA, Delta-4 [5,6] among others
have been designed and implemented. The initial efforts in

building software-implemented fault tolerance were put in integrating
fault tolerance mechanisms into the operating system. These systems are
limited in terms of accessibility and customization, and tend to only
offer a static level of fault tolerance that remains fixed throughout the
lifetime of the system. A better approach is to implement basic fault tol-
erance mechanisms in a library on top of the operating system.
However, in this case, since the library functions are coupled with appli-
cation source code, the mechanisms are still not independent.

Currently, efforts are being made to build generic architectures for fault-
tolerant distributed systems. The FRIENDS [2], the AQuA [1], the
GUARDS [4], and the Chameleon [3] represent the main streams of this
effort. The common goals of these architectures are:

• Transparency: the fault tolerance mechanisms should be transpar-
ent to application programmer.

• Generality: a wide range of applications with different fault toler-
ance requirements can use the architecture.

• Adaptability: the architecture should be able to adapt to changing
requirement both spatially and temporally.

The paper is structured as follows: Section 2 outlines the comparison
criteria based on fault model, fault detection mechanisms, fault treat-
ment strategies, and cohesion and coupling principles. Sections 3 to 6
summarize GUARDS, AQuA, FRIENDS, and Chameleon architectures
respectively. In Section 7, we evaluate the above four architectures
based on the criteria defined in Section 2.

2.0 Comparison Criteria
To evaluate the generic architectures, two system design and evaluation
concepts are needed: cohesion within each module and coupling with
the other modules:

• Cohesion is a qualitative indication of the degree to which a mod-
ule focuses on just one thing, whereas,

• Coupling is a measure of the relative interdependence among mod-
ules,

Ideally, in a generic architecture, the cohesion within each module
should be as high as possible and the coupling between modules should
be as less as possible,

More concretely, the listed architectures will be evaluated on the basis
of how they answer the following questions within these three sub-
domains:

1. Fault-model: What is the fault model of the architecture? Specifi-
cally, what are the faults handled in the architecture? Are crash
faults, value faults, time faults and their combinations considered or
just a subset of them are considered? The guiding principle is that
the lesser the assumptions about faults that can occur, the better
would be the architecture. Moreover, how many fault classifica-
tions are there in the architecture? Are the faults simply classified
as crash faults, value faults, and time faults or the faults classified
based on different basis such as location, duration, and criticality?
More classifications mean that the architecture is capable of differ-
entiating the faults in detail, thereby achieving high efficiency for
fault tolerance.

2. Fault-detection: How are faults detected? Specifically, are the
faults detected by operating system services or by system indepen-

by Yang Liu and Purnendu Sinha
Concordia University, Montréal, QC

A Survey Of Generic Architectures For Dependable Systems

Computers / Ordinateurs

dent modules? Are there different modules for different faults?
How long does it take for an error to be detected? How are different
fault detection techniques organized? The principle is that a generic
architecture should incorporate all available fault detection mecha-
nisms into the architecture in a highly cohesive way. In addition, if
new fault detection mechanism were invented, it should be easily
adopted by the architecture.

3. Fault-treatment: How are detected faults treated? Specifically,
How are faults masked? How are faulty components handled/elimi-
nated? How are different fault treatment mechanisms organized?
The basic idea is that a generic architecture should incorporate all
available fault treatment mechanisms in a highly cohesive way and
open to new technologies that might be invented in the future.

We emphasize that we focus only on the design of fault-tolerant mecha-
nisms built into these systems for our comparative studies.

La sûreté de fonctionnement ainsi que la disponibilité de systèmes
informatiques pour des applications critiques en temps réel ont été
des soucis majeurs dans le développement de différentes architec-
tures tolérant les fautes. Avec un besoin sans cesse grandissant de
fournir des services fiables et à temps, dans diverses applications,
des architectures génériques pour des systèmes sûrs de fonctionne-
ment sont développées pour s'adapter avec facilité aux exigences
fort variées de telles applications. Le courant principal dans la
construction d'architectures génériques de systèmes sûrs de fonc-
tionnement en temps réel est composé des architectures GUARDS,
AQuA, FRIENDS et Chameleon. Leur but commun est l'atteinte de
la transparence, de la généralité ainsi que la faculté d'adaptation. Le
présent article donne une vue d'ensemble de ces différentes archi-
tectures et les compare en termes de leurs modèles de fautes ainsi
que de leurs mécanismes et procédés pour détecter et traiter respec-
tivement ces dernières. Une comparaison qualitative de ces
architectures est présentée après les avoir évaluées selon les princi-
pes de couplage et de cohésion.

Dependability and availability of computing systems for critical
real-time applications have been major concerns in development of
different fault-tolerant architectures. With ever growing need to
provide for reliable and timely services in varied applications,
generic architectures for dependable systems are being developed
that can adapt with ease to very diverse requirements of such appli-
cations. The main stream of building generic architectures for
dependable real-time systems consists of the GUARDS architec-
ture, the AQuA architecture, the FRIENDS architecture, and the
Chameleon architecture. Their common goals are to achieve trans-
parency, generality and adaptability. This survey paper compares
the architectures in terms of their fault models, fault detection
mechanisms and fault treatment schemes. A qualitative compari-
son between these architectures is summarized after evaluating
them based on cohesion and coupling principle.

Sommaire

Abstract

IEEE Canadian Review - Spring / Printemps 2003 9

3.0 GUARDS
GUARDS (Generic Upgradable Architectures for Real-Time Depend-
able Systems) architecture provides a comprehensive framework from
which specific instances can be derived to meet the dependability
requirements of various application domains.

3.1 The Overview of the GUARDS Architecture

As Figure 1 shows, GUARDS uses a limited number of specific, but
generic, hardware and software components to implement an architec-
ture that can be configured into a wide variety of instances along three
architectural dimensions - redundant channels, redundant lanes and
integrity.

Channels provide the ultimate line of defense within a single instance
for physical faults that affect a single channel. Multiple processors or
lanes can be used to improve the capabilities for fault diagnosis within a
channel, e.g., by comparison of computation replicated on several
nodes. The integrity dimension aims to provide containment regions
with respect to software design faults.

3.2 Fault model of GUARDS Architecture

The GUARDS architecture is capable of handling crash faults, value
faults and time faults. Furthermore, the architecture considers both
physical faults and design faults. Physical faults are assumed to occur
independently on different components. The architecture differentiates
channel-correlated faults, lane correlated faults, and globally correlated
faults as well. However, most of the time, the faults in GUARDS archi-
tecture are classified as either temporary or permanent, because this
classification is more pertinent to the efforts of masking faults in real
time systems where temporal redundancy is not available.

3.3 Fault Detection and Diagnosis in GUARDS Architecture

Fault detections are done in two levels in the GUARDS architecture:
intra-channel level and inter-channel level. First, each channel has local
mechanisms to detect crash faults, value faults, and time faults that are
from different sources such as nucleus, hardware, system, and applica-
tion. In addition to the ability to locate faults, each channel is capable of
diagnosing the fault as permanent or temporary by running a self-test
algorithm. The self-test is carried out on a channel after it has been iso-
lated from the pool. Secondly, the inter-channel fault detection depends
on the number of operational channels in the system. As long as there
are at least three operational channels, any errors due to a single faulty
channel are detected by majority voting. In the case when two opera-
tional channels are available, a two-out-of-two vote is considered and
single channel errors are detected. Any configuration with more than
three channels is capable of tolerating arbitrary faults except a Byzan-
tine fault leading to failure of the clock synchronization mechanism.

The efficiency of fault detection and diagnosis depends on the level of
redundancy of the channels and the lanes. Moreover, the detections are
achieved by the deliberate cooperation of channels and lanes. The com-
ponents are tightly coupled together to provide efficient fault detection.

3.4 Fault treatment in GUARDS Architecture

Detected errors trigger fault diagnosis to determine which channel is
faulty. The faulty channel is then isolated from the operational channels
to execute a self-test aimed at determining whether the fault is perma-
nent or temporary. If the fault is judged to be permanent, an explicit
repair action must be carried out whereas in the case of a temporary
fault, certain fault treatment strategies may authorize automatic re-inte-
gration of the faulty component. Furthermore, Correlated faults at
integrity level 1 should be confined to that level by the integrity policy
(IP) enforcement mechanisms.

Essentially, the faults, if any, will be first contained within the channel
dimension; if the efforts fail, attempts are made to contain the faults
within the lane dimension; finally the integrity dimension tries to pre-
vent the software faults from propagating.

4.0 AQuA Architecture
The AQuA architecture, which stands for Quality of Service for Avail-
ability, allows distributed applications to request and obtain a desired
level of availability by configuring the system in response to outside
requests and changes in system resources due to faults.

4.1 The Overview of the AQuA Architecture

Figure 2 shows the different components of the AquA architecture in
one particular configuration. In the AQuA Architecture, the application
uses “Quality Objects (QuO)” to specify dependability requirement.
The AQuA framework employs the QuO runtime to handle these
requests, and the Proteus dependability manager to configure the sys-
tem in response to faults and availability requests. In addition, a
CORBA interface is provided to application objects using the AQuA
gateway. The AQuA architecture is heavily dependent on the Ensemble
protocol stacks to provide group communications services.

4.2 Fault Model in AQuA architecture

The AQuA architecture handles object faults of three types: crash fail-
ures, value faults and time faults, but imposes the following
assumptions:

• All faults occur in nodes not in links,
• Value faults occur within objects themselves, not in the links,
• Value faults occur only in the application and/or QuO runtime, thus

not in AQuA gateway.

The assumption about no value faults in links holds only when the con-
ventional coding/correction techniques (such as hamming code) are
available. If the conventional coding/correction techniques do not exist
in the underlying infrastructure, then the consequence of this assump-
tion is that either some faults that cannot be tolerated or they will be
tolerated in a very inefficient way.

4.3 Fault Detection in AQuA architecture

The crash failures are detected by Ensemble. Among the elements com-
posing the object, only the gateway process is an Ensemble process.
However, since the crash of the application process or the QuO runtime
process leads directly to the crash of the gateway process, Ensemble can
detect the crash of any element of an object. The failure of any replica
will cause a view change of the group composition. This view change is
communicated to the Proteus manager through the Proteus Communica-
tion Service (PCS) group. The comparison between the old structure of
the group and the new composition allows the dependability manager to
detect the crash failure.

Figure 1: The Overall GUARDS architecture [4]

Figure 2: The Overall AQuA Architecture [1]

Voters Monitors Buffers IIOP Encoder/Decoder Advisor

Dispatcher Protocol
Object

Gossip Object QuO

Proteus Handlers Coordinator
Gateway

Object QuO

Gateway Gateway

Object
Factory

 Proteus
Dependability
 Manager

GatewayGateway
 Name
Server

Maestra/Ensemble Group Communication System

10 IEEE Canadian Review - Spring / Printemps 2003

The voter that is implemented in the gateway part of the leader object
detects value faults. Although each object has a voter implemented,
only the voter present in the leader of the replication group is active.
When an object on the client side sends out a request it sends it to the
leader of its replication group. Then the voter of the leader votes on the
requests. If some requests differ from the majority, a single or multiple
value fault has occurred. In this case, the leader gateway process of the
replication group joins the PCS group to notify the Proteus manager
about the value fault. Equivalently, on the server side, after a request
has been processed by the different replicas of the replication group, all
replicas send back their reply to the leader of the server replication
group. The voter of the leader then votes on the different replies. A
value fault has occurred if one or more replies differ from the majority.
The leader gateway process then joins the PCS group to complain about
the value fault. Proteus thus detects a value fault by the communication
of the complaint when the leader joins the PCS group.

Time errors are detected by monitors that record information regarding
various times and omissions. Where and how the timers operate
depends on the type of faults that are being tolerated. A monitor is
implemented in the gateway part of each object. When tolerance to time
faults is required, all monitors of the object members of replication
groups activated time faults are communicated to the Proteus manager
using the PCS group structure described earlier.

The separation of detection mechanisms of crash faults and detection
mechanisms of value faults and time faults makes the fault detection of
AQuA less cohesive. Furthermore, voters and monitors are not indepen-
dent components themselves; they are parts of the AQuA gateway
whose main function is however to interface between Ensemble and
application level components. Such coupling of error detection mecha-
nisms and interfaces makes the cohesion within AQuA gateway less
efficient.

4.4 Fault Treatment in AQuA architecture

The Proteus manager advisor, using fault information communicated
from the gateways, makes decisions regarding fault treatment. After a
decision is reached, the object factories and gateways make the configu-
ration change, under control of the protocol coordinator.

For crash failures, since the number of replicas may need to be main-
tained, a new object may be started either on the same host or on
another host. The advisor decides when and where the new object is to
be started. The new object joins the replication group and the state of
the leader is transferred to the new replica.

For value and time faults, the fault treatment consists of two phases.
First, the source of the fault is determined, based on information pro-
vided to the advisor. Using complaints from the various object monitors
and voters, the advisor decides whether to kill suspected replicas, or
start new replicas, and where to start the new replicas. Second, the repli-
cas for which a value or a time fault has been detected may be killed
and new replicas started, if mandated by the advisor, in order to main-
tain the global number of replicas. The newly created objects then join
the replication groups from which objects have been killed, and the
leaders of these replication groups transfer their state to the new objects.

As the decision on how to treat faults and the action of fault treatment
are done by the advisor and the coordinator, respectively, the separation
of decision-making and action makes both advisor and coordinator more

cohesive as well as less coupling with the other modules. This is advan-
tageous in a sense that further modification of the advisor and the
coordinator is transparent to other components.

5.0 FRIENDS
The FRIENDS architecture, which stands for Flexible and Reusable
Implementation Environment for your Next Dependable System,
achieves fault tolerance by providing a library of meta-objects that can
be recursive to add new properties to distributed applications in an
object-oriented manner.

5.1 The Overview of the FRIENDS Architecture

The FRIENDS consists of three layers and a protocol:

4. The kernel layer which can be either a Unix kernel or a microker-
nel, like Chorus,

5. The system layer composed of several dedicated sub-systems,

6. The user layer dedicated to the implementation of applications and
mechanisms as meta-objects, and

7. A customizable meta-object protocol (MOP) that defines how the
application objects and meta-objects interact.

A simplified static view of the overall system architecture is given in
Figure 3.

5.2 Fault Model and Detection in FRIENDS Architecture

The FRIENDS architecture currently deals with only physical crash
faults and assumes that application objects have a deterministic behav-
ior. Concurrency and other sources of non-determinism have not been
considered yet. The fault-tolerance mechanism for other types of faults
(e.g., software faults) can be added to an application by connecting the
appropriate meta-objects to the application objects. Note that meta-
objects behavior depends on information provided by the application
objects, thus differing from mechanisms used for handling physical
faults.

The FRIENDS architecture mainly employs watchdog timer, fail silent
network attachment controllers and double memory boards to imple-
ment its fault detection mechanisms. Fault detection mechanisms are
provided in the library of fault tolerance meta-object classes (libft_mo).
In turn, the libft_mo builds these mechanisms on top of the basic ser-
vice provided in fault tolerance subsystem. New meta-objects for
different fault detection mechanisms can easily be added into the library
in a cohesive manner.

5.3 Fault Treatment in FRIENDS Architecture

Basically, three fault tolerance mechanisms are implemented in the form
of meta-object classes: a mechanism based on stable storage, a primary-
backup replication protocol and a leader-follower replication protocol.
Specifically, the stable storage is achieved by two meta-objects:
STABLE_STORAGE and DOMAIN. During the object method execu-
tion, an error can be detected by the error detection system service

Applications
 Libraries FTS: Fault-Tolerance Sub-system

SCS: Secure Communication Sub-system
GDS: Group-based Distribution Sub-system

User
Layer

System
Layer

Kernel
Layer

Application
Sub-layer

lib ft_mo lib sc_mo lib gd_mo

FTS SCS GDS

Microkernel

Meta-object
Sub-layer

Application
dependent
sub-system

Figure 3: The Overall FRIENDS Architecture [2]

IEEE Canadian Review - Spring / Printemps 2003 11

more, Chameleon differentiates the faults that might
occur in application, its own components and underly-
ing network components. This differentiation makes it
more efficient to locate the faults and subsequently to
recover from them.

6.3 Fault Detection in Chameleon Architecture

The detection mechanisms are implemented in Heart-
beat ARMOR, Execution ARMOR, Voter ARMOR,
Backup FTM and the Daemon. The Heartbeat ARMOR
is responsible for detecting crash faults that occur in
nodes, links, and daemons. If necessary, Heartbeat
ARMORs can collect information sufficient to deter-
mine the health of the node being monitored.

The Execution ARMOR is responsible for detecting
abnormal terminations (crash failures) and live-locks in
applications by overseeing application executions. The
erroneous computations (value faults) of applications
are detected by voter ARMORs. The value faults and
time faults in applications originated in underlying
hardware or operating system can also be detected by
execution ARMORs and voter ARMORs in the same
manner.

The Backup FTMs are able to detect the crash faults in
FTMs and the crash faults in Daemons on FTMs' nodes.

Daemons are capable of detecting crash faults in common ARMORs by
monitoring all the ARMORs installed by them.

Having different fault-tolerant mechanism modules inherited from the
same parent class ARMOR, the Chameleon architecture achieves high
cohesion and low coupling harmoniously.

6.4 Fault Treatment in Chameleon Architecture

Heartbeat ARMOR detects a crash failure in a node, link or daemon,
and then it notifies the FTM, which in turn removes the node from the
list of registered nodes and restarts any affected ARMORs it manages
on a new node. After that, the FTM notifies its immediate managers of
the crashed node; these managers restart any of their ARMORs and
recursively notify all subordinate managers.

When an erroneous computation (value fault) is detected, the voter
ARMOR has two choices: if the application is in dual mode, the voter
ARMOR will restart the application and notify the user; if the applica-
tion is in TMR mode, the voter ARMOR will mask the error and
optionally notify the user.

When a crash failure occurs in common ARMORs, the corresponding
Daemon will notify the crashed ARMOR's manager. The manager will
try to reinstall the ARMOR on the same node, on a different node or on
a different platform depending on the situation. The manager may also
try to employ another ARMOR with similar functionalities. When a
common ARMOR is found alive but unresponsive, the corresponding
daemon will kill the ARMOR and then notify the ARMOR's manager;
and the manager will reinstall the ARMOR accordingly.

When a crash fault is detected in a daemon, the querying Heartbeat
ARMOR notifies the daemon's manager. The daemon's manager will
treat a daemon failure as if the entire node has crashed and recovers as
for the node failure.

A crash fault in FTM and a crash fault in FTM Daemon are treated in
the same way. The corresponding backup FTM promotes itself to
become the FTM and notifies all ARMORS that it manages directly of
the change. All subordinate managers recursively notify the ARMORs
managed by them respectively. Finally, new FTM promotes a new
backup FTM from one of the surrogate managers.

As different managers and ARMORS handle different faults, fault treat-
ment mechanisms are organized in such a way that high cohesion and
low coupling are achieved without sacrificing each other.

7.0 Discussion
The GUARDS is a real-time-oriented architecture, which is naturally
determined by its three major applications that are from railway, nuclear
propulsion, and space domain. Consequently, GUARDS aims at con-
taining and masking various faults because time redundancy is assumed
unavailable, and more emphasis are given to fault diagnosis and fault

either before the new state is saved to stable storage or in between the
time it is backed up and the time the server sends the reply to the client.
In both cases the error is signaled to the client meta-objects, and the
STABLE_STORAGE will identify the recovery point and the
DOMAIN will invoke its method to maintain stable storage.

The primary-backup replication mechanism is implemented in two
meta-objects: PBR_CMO and PBR_SM. In this strategy, all replicas of
a server belong to the same atomic multicast group and, thus, receive
the same input messages in the same order. Among the replicas, only
the primary handles the client requests and checkpoints its new state at
the end of every method executed to the backups. Any primary errors
will be detected by backups, which then choose a new primary among
them. This new primary restores the last checkpointed state and, if nec-
essary, executes the current request before returning the reply to the
client.

The leader-follower replication mechanism is achieved by two meta-
objects: LFR_CMO and LFR_SMO. In this mechanism, all replicas
process input messages, but only the leader sends output messages. All
replicas of a server belong to the same atomic multicast group and
receive the same messages in the same order. The leader first executes
the request and then notifies it to the other replicas that in turn execute
the request. Only the leader returns the reply to the client.

6.0 Chameleon
The Chameleon architecture provides a powerful framework through
which fault tolerance execution strategies may be constructed and
reused to provide dependability to substantially off-the-shelf
applications.

6.1 The Overview of the Chameleon Architecture

Chameleon provides the runtime environment for reliability through the
use of ARMORs that stand for Adaptive, Reconfigurable, and Mobile
Objects for Reliability. ARMORs are components that control all opera-
tions in the Chameleon environment and can be classified into three
categories: Managers, Daemons, and Common ARMORs.

There are three kinds of managers in the Chameleon architecture: Fault
Tolerance Manager (FTM), Surrogate Manager (SM), and Backup Fault
Tolerance Manager (Backup FTM). There are six kinds of common
ARMORS in Chameleon environment: Heartbeat ARMOR, Execution
ARMOR, Checkpoint ARMOR, Voter ARMOR, Initialization ARMOR
and Fanout ARMOR. Daemons are entities resident on every participat-
ing node.

6.2 Fault Model in Chameleon Architecture

Chameleon makes no assumptions about faults that may occur in the
system. This makes it applicable to wider range of applications. Further-

Figure 4: The Overall Chameleon Architecture [3]

12 IEEE Canadian Review - Spring / Printemps 2003

Yang Liu holds a Bachelor Degree, with high
distinction, in Computer Science from Concor-
dia University. He is currently completing his
M.A. Sc. in Telecommunication Software Engi-
neering under the supervision of Professor
Ferhat Khendek at Concordia University. Yang
Liu won FCAR B1 scholarship in 2002.

Purnendu Sinha is an Assistant Professor in
the Department of Electrical and Computer
Engineering at Concordia University, Mont-
real. He obtained his Ph.D. in Computer
Engineering from Boston University, Boston,
MA. He received his M.S. degree in Computer
Science from the New Jersey Institute of Tech-
nology, Newark, NJ, and also his M.E. degree
in Electrical Engineering from the Stevens
Institute of Technology, Hoboken, NJ. His research interests
include design and analysis of distributed dependable and real-time
algorithms, embedded systems, formal methods based verification
and validation (V&V) of fault-tolerant and real-time protocols,
fault-injection based validation, and real-time imaging.

About the authors

containment instead of fault recovery. These aspects make GUARDS
more suitable for highly critical systems.

The AQuA architecture is unique in that it supports runtime reconfigu-
ration of the system; whereas other architectures only support
reconfiguration at compile time. As a result AQuA is able to offer
changing Quality of Service (QoS) at runtime. AQuA is heavily depen-
dent on the Ensemble system that is based on group communication
methodology. Consequently there is no central control point in AQuA
at all, which makes the decision making in AQuA inefficient. Cur-
rently, AQuA is still programming language dependent, which is due to
his dependence on the Maestro system that is based on C++ language.

The FRIENDS architecture's fault tolerance ability is still very limited
due to its weak fault model. However, FRIENDS holds a different phi-
losophy on how to separate fault tolerance mechanisms from
application programmers. While other architectures try to make the
fault tolerance mechanisms totally transparent to application program-
mers, FRIENDS tries to distinguish fault tolerant programmers from
application programmers; and the fault tolerant programmers' task is to
customize meta-object classes and meta-object protocols that should be
highly reusable. By this approach, the FRIENDS architecture will be
open to any new technologies in the field and also more extensible.
Another strength of FRIENDS is that it is fully object-oriented.
FRIENDS supports C++ application only.

The Chameleon is a centralized architecture. The fault tolerance man-
ager is able to oversee the whole system. The hierarchical arrangement
of managers makes the system more efficient. Chameleon is object-ori-
ented as well, providing the same level of extensibility as the FRIENDS
architecture. It has a much better fault coverage than the AQuA and
FRIENDS architectures, at the same time, it is not dedicated to critical
real-time applications only. It suits a wider range of applications with
different dependability requirements. Chameleon makes no assumption
about programming language.

Table 1 shows the comparison of the four architectures in fault models,
fault detection mechanisms and fault treatment mechanisms. We
emphasize that this comparison in no way undermines other effective
and efficient mechanisms being supported by each of these individual
architectures.

8.0 References
[1]. M. Cukier, et al. “AQuA: An Adaptive Architecture that Provides

Dependable Distributed Objects,” Proc. of IEEE Symposium on
Reliable Distributed Systems, 1998.

[2]. J.-C. Fabre, T. Perennou, “A Meta-object Architecture for Fault-
Tolerant Distributed Systems: the FRIENDS Approach,” IEEE
Transactions on Computers, 47(1), Jan. 1998.

[3]. Z. Kalbarczyk, R.K. Iyer, S. Bagchi, K. Whisnant, “Chameleon: A
Software Infrastructure for Adaptive Fault Tolerance,” IEEE

Table 1: A Comparison of Fault Tolerance Mechanisms of Different Architectures

FRIENDS AQuA CHAMELEON GUARDS

Fault Models Physical crash failures • Crash failure
• Value and time faults
• Fault-free links
• No value faults in

AquA gateway

• No specific assump-
tions

• Differentiates faults
occurring at different
locations

Based on:
• Location
• Duration
• Interdependence

Fault Detection
Mechanisms

Organized into the library of
meta-object classes

• Crash failures detected
by Ensemble

• Value and time faults
detected by voters and
monitors, respectively

Implemented in different
ARMOR, Backup FTM, and
Daemon

Achieved by the deliberate
cooperation of redundant
channels and lanes

Fault Treatment
Mechanisms

Implements separate detec-
tion and handling mecha-
nisms as meta-object classes

• Supports both active
and passive replication

• Differentiates between
decision making and
fault handling actions

Dif ferent managers and
ARMORs handle different
faults

Focuses on fault contain-
ments and fault masking

Transactions on Parallel and Distributed Systems, 10(6), pp. 560-
579, June 1999.

[4]. D. Powell, et al. “GUARDS: A Generic Upgradable Architecture
for Real-Time Dependable Systems,” IEEE Transactions on Paral-
lel and Distributed Systems, 10(6), pp. 580-599, June 1999.

[5]. D. Pradhan, Fault-Tolerant Computer System Design, Prentice-
Hall, NJ, 1996.

[6]. D.P. Siewiorek, R. Swarz, Reliable Computer Systems: Design and
Evaluation, 3/e, A.K. Peters, MA, 1998.

9.0 Acronyms

SIFT: Software Implemented Fault Tolerance

FTMP: Fault Tolerance Multiprocessor

FTPP: Fault Tolerance Parallel Processor

MAFT: Multi-computer Architecture for Fault Tolerance

ERICA: Error-Resistant Interactively Consistent Architecture

