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Parameterless Genetic Algorithms: Review and Innovation

1.0 Introduction and Review

ntroduction. Holland [16] invented the Genetic Algorithm

I (GA) as an easy-to-use general method for a wide range

of optimization problems. The performance of a GA is depen-

dant on a number of factors, including candidate solution
representation, and fitness evaluation and manipulation (via

crossover and mutation). Both crossover and mutation have parameters
(probability of crossover P. and probability of mutation P,,) that

require initialization and adjustment. For a given problem, these param-
eters, as well as the size of the population of candidate solutions (S),
require careful manual optimization, often done through trial and error.
Naturally, this diminishes the autonomy of GAs, and renders them
much less attractive to potential users, such as engineers, that are not
experts in GAs. Parameterless GAs (pGAs) represent an attempt (not
yet complete or widely used) to eliminate the need for manual tuning of
GA parameters.

1.1 Review. There are two main approaches to the elimination of
parameters in GAs: a) Parameter Tuning, and b) Parameter Control.

Parameter tuning involves finding good values for the parameters
before the GA is run and then using these values during the GA run. In
an empirical study, De Jong [8] discovered a set of parameter values,
which were good for the classes of test functions he used (P, = 0.6, P,
= 0.001, S = 60). Using the same test functions as De Jong, Grefen-
stette [11] ran a (meta-) GA to find a set of parameter values for another
GA (P.=0.95, P,,=0.001, S = 30). As shown, both studies suggest the
same low value for P,, (0.001), proposed double-digit values (< 100) for
S, and used high (> 0.5) values for P,.. Although none of these two
researchers were unable to prove that their sets were optimal for every
optimizational task, their results were viewed by many GA users as
sound empirically-founded guidelines.

In Parameter Control, one starts with certain initial parameter values;
possibly the De Jong or Grefenstette’s sets or some amalgamation
thereof. These initial values are then adjusted, during run-time, in a
number of ways. The manner in which the values of the parameters are
adapted at run-time is the basis of Eiben’s classification of Parameter
Control into three different sub-categories (Eiben et al. [9]). These sub-
categories are: (a) Deterministic, (b) Adaptive and finally (c) Self-adap-
tive. A brief review of published work in these three areas of
Parameterless GAs follows.

A. Deterministic Parameterless GAs. In this type of Parameterless
GAs, the values of the parameters are changed, during a run, according
to a heuristic formula, which usually depends on time (i.e. number of
generations or fitness evaluations).

Fogarty et al. [10] change the probability mutation in line with equation
(1) - t is the generation number.
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Hesser et al. [14] derived a general formula for probability of mutation
using the current generation number, in addition to a number of con-
stants used to customize the formula for different optimization
problems. Unfortunately, these constants are hard to compute for some
optimization problems. In equation (2) n is the population size, / is the
length of a chromosome (in bits), and t is the index of the current
generation.
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Both Back [3] and Muhlenbein [17] discovered, experimentally, that 1//
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We present a brief review of Genetic Algorithms (GAs) that do not
require the manual tuning of their parameters, and are thus called
Parameterless Genetic Algorithms (pGAs). There are three main
categories of Parameterless GAs: Deterministic, Adaptive and
Self-Adaptive pGAs. We also describe a new parameterless
Genetic Algorithm (nGA), one that is easy to understand and
implement, and which performs very well on a set of five standard
test functions.

— Sommaire

Nous présentons un bref examen des algorithmes génétiques (GA)
qui n’exigent pas 1’accord manuel de leurs paramétres, et nous
appelons ainsi les algorithmes de ‘“Parameterless Genetic Algo-
rithms” (pGA). Il y a trois catégories principales des pGAs: PGAs
déterministes, adaptatifs et individu-adaptatifs. Nous décrivons
également un nouvel algorithme génétique parameterless (nGA),
un il est facile comprendre qu’et instrument, et qui exécute tres
bien sur un ensemble de cinq fonctions standard d’essai.

is the best value for P,, for (1+1) GAs. A (1+1) GA is an algorithm that
sees single parent chromosomes each producing a single child by means
of mutation. Hence, the best of parent and child is passed to the next
generation. In other studies [4], Back proposes a general formula for
P,,, one that is a function of both generation number (#) and chromo-
some length (/). The formula is presented as equation (3); T is the
maximum number of generations allowed in a GA run.
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All formulae presented above are variations on a single theme pre-
sented symbolically by 1/, where ¢ is the generation number. In this
theme the probability of mutation is initially very high, but is quickly
reduced to a low and reasonably stable value. This agrees with common
sense, as most GAs go through a short and frantic period of locating
areas of interest on the fitness surface, followed by a lengthy and delib-
erate exploration of those locales (mainly via crossover). Naturally,
random search (and hence mutation) are ineffective methods of explora-
tion of large spaces. This simple fact leads to the incorporation of 1//
(and variants) into many formulae for P,, - / is the length of the chromo-

some which is linked to the dimensionality of the search space.

Not only is the need for manual tuning of P,, eliminated, but the perfor-

mance of GAs is much improved by the use of time-dependant formulae
for P,,. This conclusion is supported by a many studies, including [5].

B. Adaptive Parameterless GAs. In this mode of parameter control,
information fed-back from the GA is used to adjust the values of the GA
parameters, during runtime. However, (as opposed to self-adaptive con-
trol) these parameters have the same values for all individuals in the
population.

Adaptive control was first used by Rechenberg [18]. He asserted that 1
every 5 mutations should lead to fitter individuals. As such, he enforced
a variable mutation probability that was controlled by the rate of suc-
cessful mutations in a population. If, at one point in time, the fraction of
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successful mutations was more than 1/5 then the probability of muta-
tion is decreased and visa versa. Similarly, Bryant et al. [7] increased or
decreased the probabilities of crossover and mutation (from initial val-
ues) as a function of how much or little those probabilities contributed
to the generation of new fitter individuals in a given population: an
elaborate credit allocation system was employed and is detailed in their
paper.

Schlierkamp et al. [19] focused their efforts on adapting the size of the
population. Indeed, they simultaneously evolved a number of popula-
tions with different sizes. After each generation, the population with the
best maximum fitness is stored in a quality record. After a number of
generations, the population with the highest record is increased; all
other populations are decreased. In similar fashion, Hinterding et al.
[15] ran 3 populations simultaneously. These populations had an initial
size ratio of 1:2:4. After a certain pre-specified time interval the popula-
tions are halved doubled, or maintained as is, depending on the relative
fitness values of their fittest individuals: the best population is doubled
in size, while the worst one is halved; the last one is maintained as is.
Along the same theme, Harik et al. [13] ran races between multiple pop-
ulations of different sizes, allocating more time to those populations
with higher maximum fitness, and firing new populations whenever
older populations had drifted towards suboptimal (search) subspaces.

On a different note, Annunziato et al. [2] asserted that an individual’s
environment contains useful information that could be used as a basis
for parameter tuning. They used a trip-partite scheme in which a new
parameter (meeting probability) influences the likelihood of meeting
between any two individuals, which (if they meet) can either mate or
fight - see section 3.1.3 for details.

C. Self-adaptive Parameterless GAs. These GAs use parameter con-
trol methods that utilize information fed back from the GA, during its
run, to adjust the values of parameters attached to each and every indi-
vidual in the population. It was first used by Schwefel [20] in an
Evolutionary Strategy (similar to a GA, but using real numbers and
matching operators, instead of bit strings, for chromosomes), where he
tried to control the mutation step size. Each chromosome in the popula-
tion is combined with its own mutation variance, and this mutation
variance is subjected to mutation and crossover (as is the rest of the
chromosome). Back [6] extended Schwefel’s [20] work to GAs. He
added extra bits at the end of each chromosome to hold values for the
mutation and crossover probabilities. At first, the mutation and cross-
over probability values were chosen at random. Then, these bits were
subjected (again, with the rest of the chromosome) to the processes of
evolution until, gradually, chromosomes with better probabilities (and
better candidate solutions) appeared, and hence dominated the
population.

Another way of self-adapting GA parameters, described by Srinivas et
al. [21], involves assigning mutation and crossover probabilities to each
chromosome, based on its own current fitness and the fitness of the pop-
ulation at large. On the other hand, Arabas et al. [1] defined a new
quantity called remaining life time (or RLT). Every new individual is
assigned a RLT variable. Each time a new generation is created, the
RLT of every individual is updated using a bi-linear formula; how an
individual’s RLT is updated depends on whether its fitness is less than
the average fitness of the current population (or not). Once the RLT of
an individual reaches 0, it dies (i.e. is removed from the population).

2.0 Test Functions and Evaluation Measures

2.1 Test Functions. We use exactly the same test functions used in [6] -
we restate them here for convenience. This set of test functions have:

*  Problems resistant to hill-climbing,

*  Nonlinear non-separable problems,

. Scalable functions,

. A canonical form,

. A few uni-modal functions,

A few multi-modal functions of different complexity with many
local optima,

e Multi-modal functions with irregularly arranged local optima, and
*  High-dimensional functions.

All test functions have 10 dimensions and use 20 bits/variable except
for /5, which uses 6 bits/variable.
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where x; is the number of 1 bits in gene i.

2.2 Evaluation Measures. In this section we explain a number of statis-
tical measures that we use to evaluate the performance of genetic
algorithms. These measures are listed under three headings: reliability,
speed and memory load; the measures are defined in the order of their
appearance in Table 1.

A. Reliability. Reliability of convergence is essentially the likelihood
that the GA is going to converge to an optimal value, within a given
number (say 500,000) of fitness evaluations. This following statistic
measures reliability.

Percentage of Runs to Optimal Fitness: Each GA was run 30 times.
This measure reflects the percentage of runs that were successful in con-
verging to the optimal solution at or before 500 thousand (fitness
function) evaluations.

B. Speed. Speed of convergence is essentially the (average) number of
fitness evaluations required for a GA to optimally converge. This may
be assessed using the following statistical measures.

Ave. No. of Evaluations to Best Fitness, and C.V.: This measure repre-
sents the average number of evaluations that are required for a GA to
achieve its best fitness value in a run. In cases where the best fitness is
1, it serves as a measure of convergence velocity. Every run produces a
different number of evaluations to best fitness. C.V. (Coefficient of
Variation) is equal to the standard deviation of that set of evaluations,
divided by the average. It is a measure of reliability. Ave. No. of Evalu-
ations to Near-Optimal Fitness: Near-Optimal fitness is defined as a
fitness of 0.95. In cases where optimal fitness is not obtained, near-opti-
mal fitness is the next best measure of convergence velocity. This
measure is defined in the same way as the preceding measure, except
that we substitute near-optimal for optimal.

Average Best Fitness (and S.D.): This is the average of the set of best
fitness values achieved in all 30 GA runs. S.D. is standard deviation of
that set. Naturally, this is a crucial measure; GAs that are able to
achieve a best fitness of 1 (and reliably) are taken seriously; those that
return best fitnesses of less than 1 (or 1 but inconsistently) are not as
good. Ave. Mean Fitness (and S.D.): This is the average of the set of
average fitness values, achieved at the end of the 30 GA runs. S.D. is
the standard deviation of that set.

C. Memory Load. This is the amount of memory required, on average,
for a GA to achieve optimal convergence. Since the amount of memory
correlates with the number of individuals in a given population, we can
use population size as a measure of memory load. The following set of
measures tackle that issue.
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Table 1: Results of Applying nGA to Test Functions f; - f5

Function 1 Function 2 Function 3 Function 4 Function 5
Percentage of Runs to Optimal Fitness 100% 100% 100% 100% 100%
Ave. No. of Evaluations to Best 14345 145980 28873 94640 10413
Fitness CV.! 18.85 18.34 16.8 40.85 40.64
Ave. No. of Evaluations to Near- 4912 15512 9175 90465 6793
Optimal Fitness
1 1 1 1 1
Average Best Fitness S.D.
0 0 0 0 0

0.7784 0.51 0.7307 0.6 0.5241
Ave. Mean Fitness S.D.

0.0423 0.0252 0.03 0.04 0.0339
Ave. Mean Population Size to Optimal 11178 1322 121.3 178 114.7
Fitness
Ave. Max. Population Size to Optimal 11178 132.2 1213 178 114.7
Fitness
Ave. Mean Population Size to Near- 77 117 784 178 98.2
Optimal Fitness
Ave. Max. Population Size to Near- 77 117 784 178 98.2
Optimal Fitness

Ave. Mean Population Size to Optimal Fitness (~ Memory Require-
ments): In a given run, the size of the population may differ from one
generation to the next until (and after) the GA converges to the optimal
value (if ever). In one run, the average size of all the populations pre-
ceding optimal convergence is called Average Population Size to
Optimal Fitness (or APSOF). Every one of the 30 runs may return a
value for APSOF. The average value for the set of APSOF values is the
Ave. Mean Population Size to Optimal Fitness. Ave. Max. Population
Size to Optimal Fitness: For each GA run, the largest population size
prior to optimal convergence is stored in a set. The mean of that set is
the average maximum population size to optimal fitness. Ave. Mean
Population Size to Near-Optimal Fitness: In a given run, the size of the
population may differ from one generation to the next until (and after)
the GA converges to the near-optimal value of 0.95 (if ever). In one run,
the average size of all the populations preceding near-optimal conver-
gence is called Average Population Size to Near-Optimal Fitness (or
APSNOF). Every one of the 30 runs may return a value for APSNOF.
The average value for the set of APSNOF values is the Ave. Mean Pop-
ulation Size to Near-Optimal Fitness. Ave. Max. Population Size to
Near-Optimal Fitness: For each GA run, the largest population size
prior to near-optimal convergence is stored in a set. The mean of that set
is the average maximum population size to near-optimal fitness. These
measures allow GA users to assess the memory requirements for a
given GA. The smaller the size of the population required for getting an
optimally fit individual the better. This is because smaller populations
require less memory. And, memory is a serious concern, still, if one is
using large populations for real-world optimization and design
problems.

3.0 A New Parameterless GA and Results

The simple Genetic Algorithm (SGA) has been applied successfully in
many applications. However, it is not a parameterless GA. In this sec-
tion, we describe a number of elaborations of the SGA that a) enhance
the performance of the SGA, and b) make it into a pGA.

3.1 Stagnation-Triggered-Mutation (STM). The idea behind STM is
simple: older individuals stuck at a sub-optimal point on the fitness sur-
face for a long time need to be given some kind of “push” (e.g. mutation)
to reach a new potentially more promising position on the surface. This

feature helps GAs deal with fitness functions that are hard (and hence
take long) to optimize, such as multi-modal functions (e.g. test func-
tions /3 and f4 above).

Attached to each chromosome are two numbers; a mutation probability
(P,,), and a new quantity, Life Time (or LT), which measures the num-

ber of generations passed since the chromosome was last modified (via
crossover or mutation). Initially, P,, is equal to 1/1, where / is number of

bits in the rest of the chromosome. In later generations, every chromo-
some that passes through (probabilistic) crossover and/or mutation is
tested to see if it is identical to any of its parents. If it is, then its P, is
multiplied by its LT (and its LT is incremented by 1). If, on the other
hand, this chromosome is altered (via crossover or/and mutation) then
its P,,, is reset to 1/ and its LT is reset to 0.

3.2 Reverse Traversal (RT), Phenotopic and Genotopic. Phenotopic
Reverse Traversal deals with fitness surfaces that tend to drive the
majority of the population towards local maxima and away from the
global maximum (e.g. f2). RTP does this by getting a portion of the
population to traverse the fitness surface against the gradient, i.e.
towards minima rather than maxima. This also has the side effect of
producing a more diverse population than simple fitness-proportional
selection. In an RTP enhanced GA, 20% of the next generation is
selected, via fitness proportional selection, but instead of selecting those
individuals with the greatest fitness, RTP selects those with the lowest
fitness.

Genotopic Reverse Traversal (RTG) deals with deceptive fitness sur-
faces (e.g. test function f5 above). It does this by taking 20% of the
individuals (after all selection and genetic operations are applied) and
inverting their bits (turning 1’s to 0’s and 0’s to 1’s).This simple trick
was the main factor behind the 100% reliability figure returned by the
nGA for the fully deceptive function f5.

3.3 Non-Linear Fitness Amplification (NLA). This enhancement of
the SGA is designed to deal with situations where the population con-
verges to a rather flat neighborhood of a global optimum. In such cases,
it is important that the selection mechanism becomes very sensitive to
slight variations in the gradient of the fitness surface.

The way NLA works is straightforward: once the average fitness of the
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population exceeds 0.9, the fitness is scaled using equation (9); f* is the
scaled fitness, f is the original un-scaled fitness and c is a constant (that
we set to 100).

P=1/(c-H+1) )

The nGA introduces the three main new features explained above, but
also uses a fixed probability of crossover equal = 0.7 (~ De Jong [8]
empirically determined value), and implements elitism at 10%. To
determine the minimum size of the population, a pre-run large popula-
tion of 1000 individuals is created and the fitness of each individual is
computed. Hence, the standard deviation of fitness of the population is
computed (call that SDy;,0s) and used in equation (10) (below). The
size of the initial population is set to LowBound; but the population is
allowed to grow to as much double that value (as a result of STM).
Constant k is set to 3; the probability of failure (a) is set to 0.05; and
sensitivity (d) to 0.005- see [13] for more detailed information about
equation (10).

LowBound = -2 X! | In(a) . SDgpess/ d (10)

In summary, the probability of mutation is variable and is determined
by the mechanism outlined in STM. The probability of crossover is
fixed at 0.7; and the size of the population is variable, but with lower
and upper bounds.

As seen in Table 1, the new GA returned 100% reliability on all of the
test functions. As to speed, reflected in the average number of evalua-
tions to best fitness, the nGA is reasonably fast taking less than 146,000
fitness evaluations, on average, to achieve optimal convergence, which
for an average population size of ~130 translates to 1023 generation.
Finally, the amount of memory required to run the nGA is typical as the
(average) maximum population size needed to reach optimal conver-
gence never exceeded 178.

In figures 1a and 1b: blue stands for f7, red stands for f2, green stands
for /3, black stands for f4 and magenta for f5. The nGA was run 30
times per test function and the numbers used to plot the curves repre-
sent average values (over the 30 runs) of both fitness and diversity

(entropy).

Figure la demonstrates the evolution of fitness. For four out of the five
test functions, nGA’s behavior is exemplary: it succeeds in converging
by about 104 fitness evaluations; the only exception is function f4,
which is the hardest multi-modal test function used. Indeed, the nGA
performs better on the deceptive surface of function f5 than on function
f4, which is a testimony to the power of the anti-deceptive measures
(Reverse Traversal of both colors) included in the nGA.

Figure 1b, on the other hand, demonstrates that the nGA maintains a
high degree of diversity (entropy >= 10) throughout evolution - a posi-
tive feature of any GA.

4.0 Summary and Conclusions

In this paper, we present a brief (but thorough) review and classifica-
tion of parameterless GAs. We define and use a number of statistical
measures applicable to any parameterless GA; they are also platform-

—

Evaluations

independent. Having them facilitates the process of comparing any num-
ber of GAs without having to repeat other people’s work. They are also
meaningful, in that they allow GA users to choose those GAs that are
most reliable, fastest, or require the least amount of memory.

In addition, we propose a new parameterless GA (nGA), one that was
born out of the problems encountered with existing pGAs. Our main
goals in proposing the nGA is to a) build a more reliable pGA (which is
proven by the results of Table 1), and to do so by b) adding a small
number of easily realizable amendments to the simple GA.

It is our hope that given our success here, people would be more willing
to adopt parameterless GAs as a common tool of optimization, rather
than normal GAs, which require quite a bit of manual tuning by a
domain expert, prior to application.
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DeCew Falls Hydroelectric Generating Station - Commemorative celebrations

IEEE recognizes the DeCew Falls Hydroelectric Generating Station as a Pioneering Project in distance transmis-
sion of electrical energy. The Power Generation Station, located in St. Catharines, Ontario, was the site of a
Milestone Dedication Ceremony on May 2nd 2004. Members of the IEEE Hamilton Section, in co-operation with
Ontario Power Generation, unveiled a commemorative plaque (see also page 13).

3. Some of the dignatories present at the cer-
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addresses the audience at the
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Generation), Ray Findlay, Wally Read, Ron
Potts and Honorable Jim Bradley (MPP Min-
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the photo are (left to right) Ted Winch; Bob
Barnett; Ray Findlay; Ed Shadeed; Janet
Bradley; Scott Lowell; Blair MacCuish;
Alan Jex and Ron Potts. Images by John
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